Skip to main content
Log in

Biofabrication of Neural Organoids: An Experiential Learning Approach for Instructional Laboratories

  • Teaching Tips
  • Published:
Biomedical Engineering Education Aims and scope Submit manuscript

Abstract

Biomedical engineering (BME) is a multidisciplinary, constantly advancing field; as such, undergraduate programs in BME must continually adapt. Elective courses provide opportunities for students to select topic areas relevant to their interests or future careers. Specifically, laboratory courses allow experiential learning in specialized topics in a hands-on manner that is suitable and accessible to undergraduate students. In recent years, neural engineering has emerged as a research sub-specialty within BME, and students preparing to pursue careers in this field will require a broad range of fundamental and experiential training. We sought to demonstrate this possibility by implementing a neural tissue engineering module into an existing upper-level undergraduate biofabrication elective. Organoids, which are self-assembling aggregate cell culture models that mimic a tissue or organ in both function and structure, have been made more accessible by genetic tools and commercially available resources. These experimental tools can be incorporated into basic laboratory experiments to model neurological systems that are otherwise difficult to study. In this paper, we describe the execution of this new module in which teams followed an adapted protocol for producing human neural organoids and then designed and manufactured a 3D-printed 'solution' to a common problem in the fields of neural engineering and organoid research. Additionally, we include student feedback as well as advantages, disadvantages, and opportunities for improvement of this laboratory module in future implementations. Skills gained in this project-based setting could be beneficial in subsequent capstone design courses as well as translated into future courses or graduate research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Course materials are provided in Supplemental Materials.

Code Availability

N/A.

References

  1. Singh S, Prakash C, Singh R. 3D Printing in Biomedical Engineering. Singapore: Springer; 2020.

    Book  Google Scholar 

  2. Garcia L, Kerns G, O’Reilley K, Okesanjo O, Lozano J, Narendran J, et al. The role of soft robotic micromachines in the future of medical devices and personalized medicine. Micromachines (Basel). 2022. https://doi.org/10.3390/mi13010028.

    Article  PubMed  Google Scholar 

  3. Kaufman G, Jimenez J, Bradshaw A, Radecka A, Gallegos M, Kaehr B, et al. A stiff-soft composite fabrication strategy for fiber optic tethered microtools. Adv Mater Technol. 2023. https://doi.org/10.1002/admt.202202034.

    Article  Google Scholar 

  4. FDA Approves First in the World, First-of-Its-Kind Implant for the Treatment of Rare Bone Disease as a Humanitarian Use Device. US Food and Drug Administration Press Release 2021. https://www.fda.gov/news-events/press-announcements/fda-approves-first-world-first-its-kind-implant-treatment-rare-bone-disease-humanitarian-use-device, accessed March 11, 2024.

  5. Gibson I. The changing face of additive manufacturing. J Manuf Technol Manag. 2017;28:10–7. https://doi.org/10.1108/JMTM-12-2016-0182.

    Article  Google Scholar 

  6. Im CH. Special issue on neural engineering. Biomed Eng Lett. 2012;2:1. https://doi.org/10.1007/s13534-012-0053-z.

    Article  Google Scholar 

  7. Zhang LG, Kaplan DL. Neural Engineering: From Advanced Biomaterials to 3D Fabrication Techniques. Cham: Springer; 2016.

    Book  Google Scholar 

  8. He B. Neural Engineering. 3rd ed. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-43395-6.

    Book  Google Scholar 

  9. Feisel LD, Rosa AJ. The role of the laboratory in undergraduate engineering education. J Eng Educ. 2005;94:121–30. https://doi.org/10.1002/j.2168-9830.2005.tb00833.x.

    Article  Google Scholar 

  10. Perreault EJ, Litt M, Saterbak A. Educational methods and best practices in BME laboratories. Ann Biomed Eng. 2006;34:209–16. https://doi.org/10.1007/s10439-005-9030-3.

    Article  PubMed  Google Scholar 

  11. Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, et al. Organoids. Nat Rev Methods Primers. 2022. https://doi.org/10.1038/s43586-022-00174-y.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim SH, Chang MY. Application of human brain organoids—opportunities and challenges in modeling human brain development and neurodevelopmental diseases. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241512528.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Corrò C, Novellasdemunt L, Li VW. A brief history of organoids. Am J Physiol Cell Physiol. 2020;319:151–65. https://doi.org/10.1152/ajpcell.00120.2020.-In.

    Article  Google Scholar 

  14. Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, et al. Microinstrumentation for brain organoids. Adv Healthc Mater. 2024. https://doi.org/10.1002/adhm.202302456.

    Article  PubMed  Google Scholar 

  15. Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the physical microenvironment into neural organoids for neurogenesis and neurodevelopment. Small. 2023. https://doi.org/10.1002/smll.202306451.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang X, Forró C, Li TL, Miura Y, Zaluska TJ, Tsai C-T, et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-023-02081-3.

    Article  PubMed  Google Scholar 

  17. Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: the use of neurogenin-2 in neuronal differentiation. Stem Cell Rep. 2022;17:14–34. https://doi.org/10.1016/j.stemcr.2021.11.015.

    Article  CAS  Google Scholar 

  18. Telias M. Neural differentiation protocols: how to choose the correct approach. Neural Regen Res. 2023;18:1273–4. https://doi.org/10.4103/1673-5374.360171.

    Article  CAS  PubMed  Google Scholar 

  19. Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. bioengineering approaches for the advanced organoid research. Adv Mater. 2021. https://doi.org/10.1002/adma.202007949.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wankat PC, Felder RM, Smith KA, Oreovicz FS. The scholarship of teaching and learning in engineering. In: Huber MT, Morreale SP, editors. Disciplinary Styles in the Scholarship of Teaching and Learning: Exploring Common Ground. Washington, DC: American Association for Higher Education; 2002. p. 217–38.

    Google Scholar 

  21. Krathwohl DR. A revision of bloom’s taxonomy: an overview. Theory Pract. 2002;41:212–8. https://doi.org/10.1207/s15430421tip4104_2.

    Article  Google Scholar 

  22. Cvetkovic C, Basu N, Krencik R. Synaptic microcircuit modeling with 3D cocultures of astrocytes and neurons from human pluripotent stem cells. J Vis Exp. 2018. https://doi.org/10.3791/58034.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cvetkovic C, Patel R, Shetty A, Hogan MK, Anderson M, Basu N, et al. Assessing Gq-GPCR-induced human astrocyte reactivity using bioengineered neural organoids. J Cell Biol. 2022. https://doi.org/10.1083/jcb.202107135.

    Article  PubMed  PubMed Central  Google Scholar 

  24. David B, Masood F, Jensen K. Development and implementation of a virtual cell culture lab practical for an introductory BME lab course. Biomed Eng Educ. 2021;1:109–14. https://doi.org/10.1007/s43683-020-00016-x.

    Article  PubMed  Google Scholar 

  25. Johnson E, Sanders J, Jensen K. LabMate: Development and implementation of a novel livestreaming platform for hybrid or remote laboratory course delivery. Biomed Eng Educ. 2023;3:87–93. https://doi.org/10.1007/s43683-022-00102-2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Golecki, H. M., J. Amos, and J. Bradley. Designing capstone experiences for interdisciplinarity in biomedical engineering education. In ASEE, 2023.

  27. Golecki H, Bradley J. Experiential learning: exploring nuances when making ethical decisions in a capstone design course. Biomed Eng Educ. 2023. https://doi.org/10.1007/s43683-023-00126-2.

    Article  Google Scholar 

  28. Pasca SP. The rise of three-dimensional human brain cultures. Nature. 2018;553:437–45. https://doi.org/10.1038/nature25032.

    Article  CAS  PubMed  Google Scholar 

  29. Amin ND, Paşca SP. Building models of brain disorders with three-dimensional organoids. Neuron. 2018;100:389–405. https://doi.org/10.1016/j.neuron.2018.10.007.

    Article  CAS  PubMed  Google Scholar 

  30. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9:2329–40. https://doi.org/10.1038/nprot.2014.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 2019;25:558-569.e7. https://doi.org/10.1016/j.stem.2019.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zinger A, Cvetkovic C, Sushnitha M, Naoi T, Baudo G, Anderson M, et al. Humanized biomimetic nanovesicles for neuron targeting. Adv Sci. 2021. https://doi.org/10.1002/advs.202101437.

    Article  Google Scholar 

  33. Pantzos P, Gumaelius L, Buckley J, Pears A. Engineering students’ perceptions of the role of work industry-related activities on their motivation for studying and learning in higher education. Eur J Eng Educ. 2023;48:91–109. https://doi.org/10.1080/03043797.2022.2093167.

    Article  Google Scholar 

  34. Trott CD, Sample McMeeking LB, Weinberg AE. Participatory action research experiences for undergraduates: forging critical connections through community engagement. Stud High Educ. 2020;45:2260–73. https://doi.org/10.1080/03075079.2019.1602759.

    Article  Google Scholar 

  35. Krencik R, Zhang S-C. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc. 2011;6:1710–7. https://doi.org/10.1038/nprot.2011.405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krencik R, Weick JP, Liu Y, Zhang Z-J, Zhang S-C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol. 2011;29:528–34. https://doi.org/10.1038/nbt.1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krencik R, Hokanson KC, Narayan AR, Dvornik J, Rooney GE, Rauen KA, et al. Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci Transl Med. 2015;7:286ra66. https://doi.org/10.1126/scitranslmed.aaa5645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel R, Muir M, Cvetkovic C, Krencik R. Concepts toward directing human astroplasticity to promote neuroregeneration. Dev Dyn. 2019;248:21–33. https://doi.org/10.1002/dvdy.24655.

    Article  PubMed  Google Scholar 

  39. Revah O, Gore F, Kelley KW, Andersen J, Sakai N, Chen X, et al. Maturation and circuit integration of transplanted human cortical organoids. Nature. 2022;610:319–26. https://doi.org/10.1038/s41586-022-05277-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kagan BJ, Kitchen AC, Tran NT, Habibollahi F, Khajehnejad M, Parker BJ, et al. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron. 2022;110:3952-3969.e8. https://doi.org/10.1016/j.neuron.2022.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fligor CM, Lavekar SS, Harkin J, Shields PK, VanderWall KB, Huang KC, et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Rep. 2021;16:2228–41. https://doi.org/10.1016/j.stemcr.2021.05.009.

    Article  CAS  Google Scholar 

  42. Fligor CM, Huang KC, Lavekar SS, VanderWall KB, Meyer JS. Differentiation of retinal organoids from human pluripotent stem cells. Methods Cell Biol. 2020;159:279–302. https://doi.org/10.1016/bs.mcb.2020.02.005.

    Article  CAS  PubMed  Google Scholar 

  43. Lavekar SS, Harkin J, Hernandez M, Gomes C, Patil S, Huang KC, et al. Development of a three-dimensional organoid model to explore early retinal phenotypes associated with Alzheimer’s disease. Sci Rep. 2023. https://doi.org/10.1038/s41598-023-40382-4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. EurekAlert (AAAS). 3-D mini brains accelerate research for repairing brain function, 2017. https://www.eurekalert.org/news-releases/541171, accessed February 6, 2024.

  45. Sukel, K. Using astrocytes to speed organoid development. Biotechniques, 2018. https://www.biotechniques.com/cell-and-tissue-biology/using-astrocytes-to-speed-organoid-development/, accessed March 9, 2024.

  46. Bezzi P. Tweaking neural organoids to model human reactive astrocytes. J Cell Biol. 2022. https://doi.org/10.1083/jcb.202202026.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Geiger, C., and J. D. Sweeney. Work in progress: “Mini Projects”— using news articles to promote lifelong learning and expose students to engineering breadth. In Proceedings of the 2015 ASEE Annual Conference and Exposition, 2015.

  48. Napp JB. Survey of library services at engineering news record’s top 500 design firms: implications for engineering education. J Eng Educ. 2004;93:247–52. https://doi.org/10.1002/j.2168-9830.2004.tb00811.x.

    Article  Google Scholar 

  49. Kreitzer FR, Salomonis N, Sheehan A, Huang M, Park JS, Spindler MJ, et al. A robust method to derive functional neural crest cells from human pluripotent stem cells. Am J Stem Cell. 2013;2:119–31.

    CAS  Google Scholar 

  50. Fernandopulle MS, Prestil R, Grunseich C, Wang C, Gan L, Ward ME. Transcription factor-mediated differentiation of human iPSCs into neurons. Curr Protoc Cell Biol. 2018;79:1–48. https://doi.org/10.1002/cpcb.51.

    Article  CAS  Google Scholar 

  51. Wang C, Ward ME, Chen R, Liu K, Tracy TE, Chen X, et al. Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening. Stem Cell Rep. 2017;9:1221–33. https://doi.org/10.1016/j.stemcr.2017.08.019.

    Article  CAS  Google Scholar 

  52. Krencik R, Seo K, van Asperen JV, Basu N, Cvetkovic C, Barlas S, et al. Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Rep. 2017. https://doi.org/10.1016/j.stemcr.2017.10.026.

    Article  Google Scholar 

  53. Simon HA. The structure of ill structured problems. Artif Intell. 1973;4:181–201.

    Article  Google Scholar 

  54. Jonassen DH, Hung W. All problems are not equal: implications for problem-based learning. In: Walker A, Leary H, Hmelo-Silver CE, Ertmer PA, editors. Essential Readings in Problem-Based Learning. West Lafayette: Purdue University Press; 2015. p. 17–41.

    Chapter  Google Scholar 

  55. Jonassen DH. Toward a design theory of problem solving. Educ Tech Res Dev. 2000;48:63–85.

    Article  Google Scholar 

  56. Dahlmann J, Kensah G, Kempf H, Skvorc D, Gawol A, Elliott DA, et al. The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials. 2013;34:2463–71. https://doi.org/10.1016/j.biomaterials.2012.12.024.

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalez-Fernandez T, Tenorio AJ, Kent Leach J, Kent Leach J. Three-dimensional printed stamps for the fabrication of patterned microwells and high-throughput production of homogeneous cell spheroids. 3D Print Addit Manuf. 2020;7:139–47. https://doi.org/10.1089/3dp.2019.0129.

    Article  PubMed  Google Scholar 

  58. Rouwkema J, Koopman BFJM, Blitterswijk CAV, Dhert WJA, Malda J. Supply of nutrients to cells in engineered tissues. Biotechnol Genet Eng Rev. 2009;26:163–78. https://doi.org/10.5661/bger-26-163.

    Article  Google Scholar 

  59. Lancaster M, Renner M, Martin C, Wenzel D, Bicknell S, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9. https://doi.org/10.1038/nature12517.Cerebral.

    Article  CAS  PubMed  Google Scholar 

  60. Gong J, Meng T, Yang J, Hu N, Zhao H, Tian T. Three-dimensional in vitro tissue culture models of brain organoids. Exp Neurol. 2021. https://doi.org/10.1016/j.expneurol.2021.113619.

    Article  PubMed  Google Scholar 

  61. Lai BQ, Feng B, Che MT, Wang LJ, Cai S, Huang MY, et al. A modular assembly of spinal cord–like tissue allows targeted tissue repair in the transected spinal cord. Adv Sci. 2018. https://doi.org/10.1002/advs.201800261.

    Article  Google Scholar 

  62. Xu J, Fang S, Deng S, Li H, Lin X, Huang Y, et al. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng. 2023;7:253–69. https://doi.org/10.1038/s41551-022-00963-6.

    Article  CAS  PubMed  Google Scholar 

  63. Roberts BM, Jarrin SE, Mathur BN, Bailey AM. Illuminating the undergraduate behavioral neuroscience laboratory: a guide for the in vivo application of optogenetics in mammalian model organisms. J Undergr Neurosci Educ. 2016;14:111–6.

    Google Scholar 

  64. Carberry AR, Lee HS, Ohland MW. Measuring engineering design self-efficacy. J Eng Educ. 2010;99:71–9. https://doi.org/10.1002/j.2168-9830.2010.tb01043.x.

    Article  Google Scholar 

  65. Cardador MT, Jensen KJ, Lopez-Alvarez G, Cross KJ. An analysis of factors influencing intra-major specialization choice among second-year women engineering students. J Women Minor Sci Eng. 2024;30:1–34.

    Article  Google Scholar 

  66. Gee JP. Identity as an analytic lens for research in education. Rev Res Educ. 2000;25:99–125.

    Google Scholar 

  67. Cribbs JD, Hazari Z, Sonnert G, Sadler PM. Establishing an explanatory model for mathematics identity. Child Dev. 2015;86:1048–62. https://doi.org/10.1111/cdev.12363.

    Article  PubMed  Google Scholar 

  68. Rohde J, Musselman L, Benedict B, Verdín D, Godwin A, Kirn A, et al. design experiences, engineering identity, and belongingness in early career electrical and computer engineering students. IEEE Trans Educ. 2019;62:165–72. https://doi.org/10.1109/TE.2019.2913356.

    Article  Google Scholar 

  69. Rees Lewis DG, Carlson SE, Riesbeck CK, Gerber EM, Easterday MW. Encouraging engineering design teams to engage in expert iterative practices with tools to support coaching in problem-based learning. J Eng Educ. 2023;112:1012–31. https://doi.org/10.1002/jee.20554.

    Article  Google Scholar 

  70. Wynn DC, Eckert CM. Perspectives on iteration in design and development. Res Eng Des. 2017;28:153–84. https://doi.org/10.1007/s00163-016-0226-3.

    Article  Google Scholar 

  71. Roth JG, Brunel LG, Huang MS, Liu Y, Cai B, Sinha S, et al. Spatially controlled construction of assembloids using bioprinting. Nat Commun. 2023. https://doi.org/10.1038/s41467-023-40006-5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Traldi C, Chiappini V, Menduti G, Tonda-Turo C, Boido M. Advanced materials and biofabrication technologies to design in vitro functional central nervous system models. Front Med Eng. 2023. https://doi.org/10.3389/fmede.2023.1270943.

    Article  Google Scholar 

  73. Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med. 2016;22:254–65. https://doi.org/10.1016/j.molmed.2016.01.003.

    Article  PubMed  Google Scholar 

  74. Mabrouk M, Beherei HH, Das DB. Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Mater Sci Eng C. 2020. https://doi.org/10.1016/j.msec.2020.110716.

    Article  Google Scholar 

  75. Willson K, Atala A. Medical 3D printing: tools and techniques. Today Tomorrow. 2022. https://doi.org/10.1146/annurev-chembioeng.

    Article  Google Scholar 

  76. Gu GX, Su I, Sharma S, Voros JL, Qin Z, Buehler MJ. Three-dimensional-printing of bio-inspired composites. J Biomech Eng. 2016. https://doi.org/10.1115/1.4032423.

    Article  Google Scholar 

  77. Jang TS, Jung H-D, Pan HM, Han WT, Chen S, Song J. 3D printing of hydrogel composite systems: recent advances in technology for tissue engineering. Int J Bioprint. 2018;4(1):126. https://doi.org/10.18063/IJB.v4i1.126.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. Nat Rev Mater. 2019;4:606–22. https://doi.org/10.1038/s41578-019-0129-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Su CK. Review of 3D-Printed functionalized devices for chemical and biochemical analysis. Anal Chim Acta. 2021. https://doi.org/10.1016/j.aca.2021.338348.

    Article  PubMed  Google Scholar 

  80. Passaro AP, Stice SL. Electrophysiological analysis of brain organoids: current approaches and advancements. Front Neurosci. 2021. https://doi.org/10.3389/fnins.2020.622137.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Eichmüller OL, Knoblich JA. Human cerebral organoids—a new tool for clinical neurology research. Nat Rev Neurol. 2022;18:661–80. https://doi.org/10.1038/s41582-022-00723-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ramirez S, Mukherjee A, Sepulveda S, Becerra-Calixto A, Bravo-Vasquez N, Gherardelli C, et al. Modeling traumatic brain injury in human cerebral organoids. Cells. 2021. https://doi.org/10.3390/cells10102683.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lavekar SS, Patel MD, Montalvo-Parra MD, Krencik R. Asteroid impact: the potential of astrocytes to modulate human neural networks within organoids. Front Neurosci. 2023. https://doi.org/10.3389/fnins.2023.1305921.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the students for their participation and feedback.

Funding

The work was funded by the Department of Bioengineering, University of Illinois Urbana Champaign.

Author information

Authors and Affiliations

Authors

Contributions

CC and RK conceptualized and designed the laboratory module. CC and SL instructed the course when this module was introduced. SL collected and analyzed the data. RK supplied resources. HG provided intellectual guidance. CC, SL, RK, and HG wrote the manuscript.

Corresponding author

Correspondence to Caroline Cvetkovic.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Cell Lines

The parental cell line used, WTC-11, was generated as described [49] and is available at Coriell (GM25256). It was further genetically engineered to produce inducible neurons as described [50].

Ethical Approval

This study has been deemed exempt (NHSR Determination #24477) by the Institutional Review Board of the University of Illinois Urbana Champaign’s Office for the Protection of Research Subjects (OPRS).

Consent to Participate

N/A.

Consent for Publication

N/A.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cvetkovic, C., Lindley, S., Golecki, H. et al. Biofabrication of Neural Organoids: An Experiential Learning Approach for Instructional Laboratories. Biomed Eng Education (2024). https://doi.org/10.1007/s43683-024-00145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43683-024-00145-7

Keywords

Navigation