Skip to main content
Log in

Equity, autonomy, and the ethical risks and opportunities of generalist medical AI

  • Original Research
  • Published:
AI and Ethics Aims and scope Submit manuscript

Abstract

This paper considers the ethical risks and opportunities presented by generalist medical artificial intelligence (GMAI), a kind of dynamic, multimodal AI proposed by Moor et al. (2023) for use in health care. The research objective is to apply widely accepted principles of biomedical ethics to analyze the possible consequences of GMAI, while emphasizing the distinctions between GMAI and current-generation, task-specific medical AI. The principles of autonomy and health equity in particular provide useful guidance for the ethical risks and opportunities of novel AI systems in health care. The ethics of two applications of GMAI are examined: enabling decision aids that inform and educate patients about certain treatments and conditions, and expanding AI-driven diagnosis and treatment recommendation. Emphasis is placed on the potential of GMAI to improve shared decision-making between patients and providers, which supports patient autonomy. Another focus is on health equity, or the reduction of health and access disparities facing underserved populations. Although GMAI presents opportunities to improve patient autonomy, health literacy, and health equity, premature or inadequately regulated adoption of GMAI has the potential to compromise both health equity and patient autonomy. On the other hand, there are significant risks to health equity and autonomy that may arise from not adopting GMAI that has been thoroughly validated and tested. A careful balancing of these risks and benefits will be required to secure the best ethical outcome, if GMAI is ever employed at scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. One of the most powerful and distinctive features of such foundation models is their capacity for transfer or multimodal learning [13, 14], which involves taking “knowledge” learned from one task (e.g., object recognition in images) and applying it to another task (e.g., activity recognition in videos)” [13]. In theory, a foundation model capable of both multimodal inputs and outputs could be fed certain radiologic images and output a detailed diagnostic report, even if the images were not obviously similar to previous images or possibly in a different format [4].

  2. Of course, what counts as “accurate” may not always be perfectly clear-cut, especially with respect to treatment recommendations. One means of assessing accuracy in treatment recommendations is to look at the degree of convergence between the medical AI system and a panel of experts. This method has been used to assess the quality of treatment recommendations provided by IBM’s Watson for Oncology, for example [60]. But there is at least a theoretical possibility that GMAI might eventually be able to make treatment recommendations for certain patients that deviate from the standard of care but might nonetheless be beneficial.

  3. GMAI models might also promote adherence to a designated treatment plan by sending verbal and visual reminders in the patient’s preferred format, and by answering patients’ non-urgent questions about self-obtained readings (e.g., of blood pressure or glucose) through an integrated chatbot.

References

  1. Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25(1), 44–56 (2019). https://doi.org/10.1038/s41591-018-0300-7

    Article  Google Scholar 

  2. Shaheen, M. Y. (2021). Applications of Artificial Intelligence (AI) in healthcare: A review. ScienceOpen Preprints. https://doi.org/10.14293/s2199-1006.1.sor-.ppvry8k.v1

    Article  Google Scholar 

  3. Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., Tsaneva-Atanasova, K.: Artificial intelligence, bias and clinical safety. BMJ Qual. Saf. 28(3), 231–237 (2019)

    Article  Google Scholar 

  4. Moor, M., Banerjee, O., Abad, Z.S.H., Krumholz, H.M., Leskovec, J., Topol, E.J., Rajpurkar, P.: Foundation models for generalist medical artificial intelligence. Nature 616(7956), 259–265 (2023). https://doi.org/10.1038/s41586-023-05881-4

    Article  Google Scholar 

  5. Rajpurkar, P., Chen, E., Banerjee, O., Topol, E.J.: AI in health and medicine. Nat. Med. 28(1), 31–38 (2022). https://doi.org/10.1038/s41591-021-01614-0

    Article  Google Scholar 

  6. Kung, T.H., et al.: Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS. Dig. Health. 2(2), 0000198 (2023)

    Google Scholar 

  7. Manickam, P., Mariappan, S.A., Murugesan, S.M., Hansda, S., Kaushik, A., Shinde, R., Thipperudraswamy, S.P.: Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors 12(8), 562 (2022). https://doi.org/10.3390/bios12080562

    Article  Google Scholar 

  8. Matheny, M., Israni, S.T., Ahmed, M., Whicher, D.: Artificial intelligence in health care: The hope, the hype, the promise, the peril. National Academy of Medicine, Washington, DC (2019). https://doi.org/10.1001/jama.2019.21579

    Book  Google Scholar 

  9. Hashimoto, D.A., Rosman, G., Rus, D., Meireles, O.R.: Artificial intelligence in surgery: promises and perils. Ann. Surg. 268(1), 70–76 (2018). https://doi.org/10.1097/sla.0000000000002693

    Article  Google Scholar 

  10. Johnson, K.B., Wei, W.Q., Weeraratne, D., Frisse, M.E., Misulis, K., Rhee, K., Snowdon, J.L.: Precision medicine, AI, and the future of personalized health care. Clin. Translat. Sci. 14(1), 86–93 (2021). https://doi.org/10.1111/cts.12884

    Article  Google Scholar 

  11. Mai, G., Huang, W., Sun, J., Song, S., Mishra, D., Liu, N., & Lao, N. (2023). On the opportunities and challenges of foundation models for geospatial artificial intelligence. arXiv preprint arXiv:2304.06798. https://doi.org/10.1145/3557915.3561043

  12. Qin, Y., Hu, S., Lin, Y., Chen, W., Ding, N., Cui, G., & Sun, M. (2023). Tool learning with foundation models. arXiv preprint arXiv:2304.08354.

  13. Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., & Liang, P. (2021). On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.

  14. Fei, N., Lu, Z., Gao, Y., Yang, G., Huo, Y., Wen, J., Wen, J.R.: Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 13(1), 3094 (2022)

    Article  Google Scholar 

  15. Alkaissi, H., McFarlane, S.I.: Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus (2023). https://doi.org/10.7759/cureus.35179

    Article  Google Scholar 

  16. Sallam, M.: ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare (2023). https://doi.org/10.3390/healthcare11060887

    Article  Google Scholar 

  17. Santhoshkumar, S.P., Susithra, K., Prasath, T.K.: An Overview of Artificial Intelligence Ethics: Issues and Solution for Challenges in Different Fields. J. Art. Intellig. Caps. Netw. 5(1), 69–86 (2023)

    Google Scholar 

  18. Duraipandian, M.: Review on Artificial Intelligence and its Implementations in Digital Ersa. J Inform Technol Digit World. 4(2), 84–94 (2022). https://doi.org/10.36548/jitdw.2022.2.003

    Article  Google Scholar 

  19. Beauchamp, T.L., Childress, J.F.: Principles of biomedical ethics. Oxford University Press (2019)

    Google Scholar 

  20. Evans, J.H.: A sociological account of the growth of principlism. Hastings Cent. Rep. 30(5), 31–39 (2000)

    Article  Google Scholar 

  21. Sepucha, K., Atlas, S.J., Chang, Y., et al.: Patient decision aids improve decision quality and patient experience and reduce surgical rates in routine orthopaedic care: a prospective cohort study. J. Bone. Jt. Surg. Am. 99(15), 1253–1260 (2017)

    Article  Google Scholar 

  22. Stacey, D., Taljaard, M., Dervin, G., et al.: Impact of patient decision aids on appropriate and timely access to hip or knee arthroplasty for osteoarthritis: a randomized controlled trial. Osteoarth. Cartil. 24(1), 99–107 (2016)

    Article  Google Scholar 

  23. Jayakumar, P., Moore, M.G., Furlough, K.A., Uhler, L.M., Andrawis, J.P., Koenig, K.M., Bozic, K.J.: Comparison of an artificial intelligence–enabled patient decision aid vs educational material on decision quality, shared decision-making, patient experience, and functional outcomes in adults with knee osteoarthritis. JAMA Netw. Open (2021). https://doi.org/10.1001/jamanetworkopen.2020.37107

    Article  Google Scholar 

  24. Emanuel, E.J., Emanuel, L.L.: Four models of the physician-patient relationship. JAMA 267(16), 2221–2226 (1992)

    Article  Google Scholar 

  25. Stiggelbout, A. M., Van der Weijden, T., De Wit, M. P., Frosch, D., Légaré, F., Montori, V. M., & Elwyn, G. Shared decision making: really putting patients at the centre of healthcare. BMJ, 344(7842), 28–31 (2012)

    Google Scholar 

  26. Gaube, S., Suresh, H., Raue, M., Merritt, A., Berkowitz, S.J., Lermer, E., Ghassemi, M.: Do as AI say: susceptibility in deployment of clinical decision-aids. NPJ. Dig. Med. 4(1), 31 (2021)

    Article  Google Scholar 

  27. Astromskė, K., Peičius, E., Astromskis, P.: Ethical and legal challenges of informed consent applying artificial intelligence in medical diagnostic consultations. AI & Soc. 36, 509–520 (2021)

    Article  Google Scholar 

  28. Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digital Health 5, 1–12 (2019). https://doi.org/10.1177/2055207619871808

    Article  Google Scholar 

  29. McCradden, M.D., Joshi, S., Anderson, J.A., Mazwi, M., Goldenberg, A., Zlotnik Shaul, R.: Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning. J. Am. Med. Inform. Assoc. 27(12), 2024–2027 (2020)

    Article  Google Scholar 

  30. Tait, A.R., Hutchinson, R.J.: Informed consent training in pediatrics—are we doing enough? JAMA Pediatr. 172(3), 211–212 (2018). https://doi.org/10.1001/jamapediatrics.2017.4088

    Article  Google Scholar 

  31. Malhotra, N.K.: Information load and consumer decision making. J. Cons. Res. 8(4), 419–430 (1982). https://doi.org/10.1086/208882

    Article  MathSciNet  Google Scholar 

  32. Phillips-Wren, G., Adya, M.: Decision making under stress: The role of information overload, time pressure, complexity, and uncertainty. J. Decis. Syst. 29(sup1), 213–225 (2020)

    Article  Google Scholar 

  33. Lipkus, I.M., Samsa, G., Rimer, B.K.: General performance on a numeracy scale among highly educated samples. Med. Decis. Making 21(1), 37–44 (2001). https://doi.org/10.1177/0272989x0102100105

    Article  Google Scholar 

  34. Schwartz, P.H.: Questioning the quantitative imperative: decision aids, prevention, and the ethics of disclosure. Hastings Cent. Rep. 41(2), 30–39 (2011). https://doi.org/10.1353/hcr.2011.0029

    Article  Google Scholar 

  35. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainability of artificial intelligence in medicine. Wiley. Interdisc. Rev. Data. Min. Knowled. Disc. 9(4), e1312 (2019)

    Article  Google Scholar 

  36. Beil, M., Proft, I., van Heerden, D., Sviri, S., van Heerden, P.V.: Ethical considerations about artificial intelligence for prognostication in intensive care. Intensive Care Med. Exp. 7(1), 1–13 (2019). https://doi.org/10.1186/s40635-019-0286-6

    Article  Google Scholar 

  37. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harv. JL & Tech. 31, 841 (2017)

    Google Scholar 

  38. Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K. R. (Eds.). (2019). Explainable AI: interpreting, explaining and visualizing deep learning (Vol. 11700). Springer Nature.

  39. Funnell, M.M., Anderson, R.M., Arnold, M.S., Barr, P.A., Donnelly, M., Johnson, P.D., White, N.H.: Empowerment: an idea whose time has come in diabetes education. Diab. Educ. (1991). https://doi.org/10.1177/014572179101700108

    Article  Google Scholar 

  40. Schulz, P. J., & Nakamoto, K. (2011, March). “Bad” literacy, the internet, and the limits of patient empowerment. In 2011 AAAI Spring Symposium Series.

  41. Wilson, P., Risk, A.: How to find the good and avoid the bad or ugly: a short guide to tools for rating quality of health information on the internet. BMJ 324(7337), 598–602 (2002). https://doi.org/10.1136/bmj.324.7337.598

    Article  Google Scholar 

  42. Holone, H.: The filter bubble and its effect on online personal health information. Croat. Med. J. 57(3), 298 (2016). https://doi.org/10.3325/cmj.2016.57.298

    Article  Google Scholar 

  43. Ryan, A., Wilson, S.: Internet healthcare: do self-diagnosis sites do more harm than good? Expert Opin. Drug Saf. 7(3), 227–229 (2008). https://doi.org/10.1517/14740338.7.3.227

    Article  Google Scholar 

  44. Robertson, N., Polonsky, M., McQuilken, L.: Are my symptoms serious Dr Google? A resource-based typology of value co-destruction in online self-diagnosis. Australas. Mark. J. 22(3), 246–256 (2014). https://doi.org/10.1016/j.ausmj.2014.08.009

    Article  Google Scholar 

  45. Wilson, P.M.: A policy analysis of the expert patient in the United Kingdom: self-care as an expression of pastoral power? Health Soc. Care Commun. 9(3), 134–142 (2001)

    Article  Google Scholar 

  46. Fox, N.J., Ward, K.J., O’Rourke, A.J.: The ‘expert patient’: empowerment or medical dominance? The case of weight loss, pharmaceutical drugs and the Internet. Soc Sci Med 60(6), 1299–1309 (2005). https://doi.org/10.1016/j.socscimed.2004.07.005

    Article  Google Scholar 

  47. Prevalence of Multiple Chronic Conditions Among U.S. Adults, 2018. CDC. 2020 <https://www.cdc.gov/pcd/issues/2020/20_0130.htm>.

  48. Amann, J., Blasimme, A., Vayena, E., Frey, D., Madai, V.I.: Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20(1), 1–9 (2020)

    Article  Google Scholar 

  49. Čartolovni, A., Tomičić, A., Mosler, E.L.: Ethical, legal, and social considerations of AI-based medical decision-support tools: A scoping review. Int. J. Med. Informat. 161, 104738 (2022)

    Article  Google Scholar 

  50. Braveman, P.: Health disparities and health equity: concepts and measurement. Annu. Rev. Public Health 27, 167–194 (2006)

    Article  Google Scholar 

  51. Berkman, N.D., Sheridan, S.L., Donahue, K.E., Halpern, D.J., Crotty, K.: Low health literacy and health outcomes: an updated systematic review. Ann. Intern. Med. 155(2), 97–107 (2011)

    Article  Google Scholar 

  52. Fleary, S.A., Ettienne, R.: Social disparities in health literacy in the United States. HLRP Health Liter. Res. Pract. 3(1), 47–52 (2019)

    Google Scholar 

  53. Gooberman-Hill, R., Sansom, A., Sanders, C.M., Dieppe, P.A., Horwood, J., Learmonth, I.D., Donovan, J.L.: Unstated factors in orthopaedic decision-making: a qualitative study. BMC Musculoskel. Disord. (2010). https://doi.org/10.1186/1471-2474-11-213

    Article  Google Scholar 

  54. Youm, J., Chan, V., Belkora, J., Bozic, K.J.: Impact of socioeconomic factors on informed decision making and treatment choice in patients with hip and knee OA. J. Arthroplasty 30(2), 171–175 (2015)

    Article  Google Scholar 

  55. McDougall, R.J.: Computer knows best? The need for value-flexibility in medical AI. J. Med. Ethics 45(3), 156–160 (2019). https://doi.org/10.1136/medethics-2018-105118

    Article  MathSciNet  Google Scholar 

  56. Ross, N. & Herman, B. Denied by AI: How Medicare Advantage plans use algorithms to cut off care for seniors in need. Stat News. https://www.statnews.com/2023/03/13/medicare-advantage-plans-denial-artificial-intelligence

  57. Meiring, C., Dixit, A., Harris, S., MacCallum, N.S., Brealey, D.A., Watkinson, P.J., Ercole, A.: Optimal intensive care outcome prediction over time using machine learning. PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0206862

    Article  Google Scholar 

  58. McWilliams, C.J., Lawson, D.J., Santos-Rodriguez, R., Gilchrist, I.D., Champneys, A., Gould, T.H., Bourdeaux, C.P.: Towards a decision support tool for intensive care discharge: machine learning algorithm development using electronic healthcare data from MIMIC-III and Bristol UK. BMJ Open 9(3), 025925 (2019)

    Article  Google Scholar 

  59. Di Nucci, E.: Should we be afraid of medical AI? J. Med. Ethics 45(8), 556–558 (2019)

    Article  Google Scholar 

  60. Jie, Z., Zhiying, Z., Li, L.: A meta-analysis of Watson for Oncology in clinical application. Sci. Rep. 11(1), 5792 (2021). https://doi.org/10.1038/s41598-021-84973-5

    Article  Google Scholar 

  61. Strickland, E.: IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care. IEEE Spectr. 56(4), 24–31 (2019)

    Article  MathSciNet  Google Scholar 

  62. Acosta, J.N., Falcone, G.J., Rajpurkar, P., Topol, E.J.: Multimodal biomedical AI. Nat. Med. 28(9), 1773–1784 (2022)

    Article  Google Scholar 

  63. Divya, S., Indumathi, V., Ishwarya, S., Priyasankari, M., Devi, S.K.: A self-diagnosis medical chatbot using artificial intelligence. J. Web. Develop. Web. Desig. 3(1), 1–7 (2018)

    Google Scholar 

  64. Greene, A., Greene, C.C., Greene, C.: Artificial intelligence, chatbots, and the future of medicine. Lancet Oncol. 20(4), 481–482 (2019). https://doi.org/10.1016/s1470-2045(19)30142-1

    Article  MathSciNet  Google Scholar 

  65. VanBuskirk, K.A., Wetherell, J.L.: Motivational interviewing with primary care populations: a systematic review and meta-analysis. J. Behav. Med. 37, 768–780 (2014)

    Article  Google Scholar 

  66. Shi, L. The impact of primary care: a focused review. Scientifica, 1–22 (2012). https://doi.org/10.6064/2012/432892

    Article  Google Scholar 

  67. Chokshi, D.A.: Income, poverty, and health inequality. JAMA 319(13), 1312–1313 (2018)

    Article  Google Scholar 

  68. Chetty, R., Stepner, M., Abraham, S., Lin, S., Scuderi, B., Turner, N., Cutler, D.: The association between income and life expectancy in the United States, 2001–2014. JAMA (2016). https://doi.org/10.1001/jama.2016.4226

    Article  Google Scholar 

  69. Nanayakkara, S., Fogarty, S., Tremeer, M., Ross, K., Richards, B., Bergmeir, C., Kaye, D.M.: Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study. PLoS Med. (2018). https://doi.org/10.1371/journal.pmed.1002709

    Article  Google Scholar 

  70. Langlotz, C.P.: Will artificial intelligence replace radiologists? Radiol Artific Intellig 1(3), 190058 (2019)

    Article  Google Scholar 

  71. Contractor, D., McDuff, D., Haines, J. K., Lee, J., Hines, C., Hecht, B., & Li, H. (2022, June). Behavioral use licensing for responsible AI. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 778–788).

  72. Lantos, J., Matlock, A.M., Wendler, D.: Clinician integrity and limits to patient autonomy. JAMA 305(5), 495–499 (2011). https://doi.org/10.1001/jama.2011.32

    Article  Google Scholar 

  73. Ploug, T., Holm, S.: The right to refuse diagnostics and treatment planning by artificial intelligence. Med. Health Care Philos. 23(1), 107–114 (2020)

    Article  Google Scholar 

  74. Currie, G., & Hawk, K. E. (2021, March). Ethical and legal challenges of artificial intelligence in nuclear medicine. In Seminars in Nuclear Medicine (Vol. 51, No. 2, pp. 120–125). WB Saunders.

  75. Price, W.N., Gerke, S., Cohen, I.G.: Potential liability for physicians using artificial intelligence. JAMA 322(18), 1765–1766 (2019). https://doi.org/10.1001/jama.2019.15064

    Article  Google Scholar 

  76. Maliha, G., Gerke, S., Cohen, I.G., Parikh, R.B.: Artificial Intelligence and Liability in Medicine. Milbank Q. 99(3), 629–647 (2021)

    Article  Google Scholar 

  77. Obermeyer, Z., Emanuel, E.J.: Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med. 375(13), 1216 (2016). https://doi.org/10.1056/nejmp1606181

    Article  Google Scholar 

  78. Beam, A.L., Kohane, I.S.: Big data and machine learning in health care. JAMA 319(13), 1317–1318 (2018). https://doi.org/10.1001/jama.2017.18391

    Article  Google Scholar 

  79. Ohm, P.: Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA l. Rev. 57, 1701 (2009)

    Google Scholar 

  80. Price, W.N., Cohen, I.G.: Privacy in the age of medical big data. Nat. Med. 25(1), 37–43 (2019). https://doi.org/10.1038/s41591-018-0272-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Sass.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sass, R. Equity, autonomy, and the ethical risks and opportunities of generalist medical AI. AI Ethics (2023). https://doi.org/10.1007/s43681-023-00380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43681-023-00380-8

Keywords

Navigation