Skip to main content
Log in

Semi-supervised multi-label feature selection with local logic information preserved

  • Original Article
  • Published:
Advances in Computational Intelligence Aims and scope Submit manuscript

Abstract

In reality, like single-label data, multi-label data sets have the problem that only some have labels. This is an excellent challenge for multi-label feature selection. This paper combines the logistic regression model with graph regularization and sparse regularization to form a joint framework (SMLFS) for semi-supervised multi-label feature selection. First of all, the regularization of the feature graph is used to explore the geometry structure of the feature, to obtain a better regression coefficient matrix, which reflects the importance of the feature. Second, the label graph regularization is used to extract the available label information, and constrain the regression coefficient matrix, so that the regression coefficient matrix can better fit the label information. Third, the \(L_{2,p}\)-norm \(0<p\le 1\) constraint is used to ensure the sparsity of the regression coefficient matrix so that it is more convenient to distinguish the importance of features. In addition, an iterative updating algorithm with convergence is designed and proved to solve the above problems. Finally, the proposed method is validated on eight classic multi-label data sets, and the experimental results show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alalga A, Benabdeslem K, Taleb N (2016) Soft-constrained Laplacian score for semi-supervised multi-label feature selection. Knowl Inf Syst 47(1):75–98

    Article  Google Scholar 

  • Bermingham ML, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, Campbell H, Wright AF, Wilson JF, Agakov F, Navarro P, Haley CS (2015) Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci Rep 5:10312

    Article  Google Scholar 

  • Cai ZL, Zhu W (2018) Multi-label feature selection via feature manifold learning and sparsity regularization. Int J Mach Learn Cybern 9(8):1321–1334

    Article  Google Scholar 

  • Cai J, Luo J, Wang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–79

    Article  Google Scholar 

  • Chang X, Shen H, Wang S, Liu J, Xue L (2014) Semi-supervised feature analysis for multimedia annotation by mining label correlation. Adv Knowl Discov Data Min 8444:74–85

    Article  Google Scholar 

  • Chang XJ, Nie FP, Yang Y, Zhang CQ, Huang H (2016) Convex sparse PCA for unsupervised feature learning. ACM Trans Knowl Discov Data 11(1):1–16

    Article  Google Scholar 

  • Chen SB, Zhang YM (2019) Extended adaptive Lasso for multi-class and multi-label feature selection. Knowl Based Syst 173:28–36

    Article  Google Scholar 

  • Deliparaschos KM, Nenedakis FI, Tzafestas SG (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(1):1–30

    MathSciNet  Google Scholar 

  • Duda J (1995) Supervised and unsupervised discretization of continuous features. In: Twelfth International Conference on Machine Learning. Sydney, Australia: ICML 1995:194–202

  • Elguebaly T, Bouguila N (2015) Simultaneous high-dimensional clustering and feature selection using asymmetric gaussian mixture models. Image Vis Comput 34:27–41

    Article  Google Scholar 

  • Gu Q, Zhou J (2009) Co-clustering on manifolds. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM 2009:359–368

  • Hu JC, Li YH, Gao WF, Zhang P (2020) Robust multi-label feature selection with dual-graph regularization. Knowl Based Syst 203:106126

    Article  Google Scholar 

  • Kawano S (2013) Semi-supervised logistic discrimination via labeled data and unlabeled data from different sampling distributions. Stat Anal Data Min 6(6):472–481

    Article  MathSciNet  Google Scholar 

  • Kawano S, Misumi T, Konishi S (2012) Semi-Supervised Logistic Discrimination Via Graph-Based Regularization. Neural Process Lett 36(3):203–216

    Article  Google Scholar 

  • Lee J, Kim DW (2015) Fast multi-label feature selection based on information-theoretic feature ranking. Pattern Recogn 48(9):2761–2771

    Article  Google Scholar 

  • Lee J, Kim DW (2017) SCLS: multi-label feature selection based on scalable criterion for large label set. Pattern Recogn 66:342–352

    Article  MathSciNet  Google Scholar 

  • Lee J, Lim H, Kim DW (2012) Approximating mutual information for multi-label feature selection. Electron Lett 48(15):929–930

    Article  Google Scholar 

  • Li T, Meng ZJ, Ni BB, Shen JB, Wang M (2016) Robust geometric p-norm feature pooling for image classification and action recognition. Image Vis Comput 55(2):64–76

    Article  Google Scholar 

  • Lin YJ, Hu QH, Liu JH, Duan J (2015) Multi-label feature selection based on max-dependency and min-redundancy. Neurocomputing 168(30):92–103

    Article  Google Scholar 

  • Liu H, Zhang S, Wu X (2014) MLSLR: multi-label learning via sparse logistic regression. Inf Sci 281:310–320

    Article  Google Scholar 

  • Nie FP, Huang H, Cai X et al (2010) Efficient and robust feature selection via joint \(L_{21}\)-norms minimization. Adv Neural Inf Process Syst NIPS 2010:1813–1821

    Google Scholar 

  • Ren YZ, Zhang GJ, Yu GX, Li X (2012) Local and global structure preserving based feature selection. Neurocomputing 89:147–157

    Article  Google Scholar 

  • Shi CJ, Duan CY, Gu ZB, Tian Q, An GY, Zhao RZ (2018) Semi-supervised feature selection analysis with structured multi-view sparse regularization. Neurocomputing 330:412–424

    Article  Google Scholar 

  • Sun X, Liu YH, Li J, Zhu JQ, Liu XJ, Chen HL (2012) Using cooperative game theory to optimize the feature selection problem. Neurocomputing 97:86–93

    Article  Google Scholar 

  • Sun L, Kudo M, Kimura K (2017) READER: robust semi-supervised multi-label dimension reduction. IEICE Trans Inf Syst e100.d(10):2597–2604

  • Taher KA, Jisan BMY, Rahman MM (2019) Network intrusion detection using supervised machine learning technique with feature selection. 2019 International Conference on Robotics, Electrical and Signal Processing Techniques. Bangladesh: IEEE Press 2019:643–646

  • Tang BG, Zhang L (2020) Local preserving logistic I-relief for semi-supervised feature selection. Neurocomputing 399:48–64

    Article  Google Scholar 

  • Wang SP, Wang H (2017) Unsupervised feature selection via low-rank approximation and structure learning. Knowl Based Syst 124:70–79

    Article  Google Scholar 

  • Yan Y, Nie FP, Li W, Gao CQ, Yang Y, Xu D (2016) Image classification by cross-media active learning with privileged information. IEEE Trans Multimed 18(12):2494–2502

    Article  Google Scholar 

  • Yang Y, Xu D, Nie FP, Yan SC, Zhuang YT (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19(10):2761–2773

    Article  MathSciNet  Google Scholar 

  • Yang Y, Wu F, Nie FP (2012) Web and personal image annotation by mining label correlation with relaxed visual graph embedding. IEEE Trans Image Process 21(3):1339–1351

    Article  MathSciNet  Google Scholar 

  • Yang Y, Yang Y, Shen HT, Zhang YC, Du XY, Zhou XF (2013) Discriminative nonnegative spectral clustering with out-of-sample extension. IEEE Trans Knowl Data Eng 25(8):1760–1771

    Article  Google Scholar 

  • Yang Y, Song JK, Huang Z, Ma ZG, Sebe N, Hauptmann Alexander G (2013) Multi-feature fusion via hierarchical regression for multimedia analysis. IEEE Trans Multimed 15(3):572–581

    Article  Google Scholar 

  • Zhang ML, Zhou ZH (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038–2048

    Article  Google Scholar 

  • Zhang R, Nie FP, Li XL, Wei X (2018) Feature selection with multi-view data: a survey. Inf Fusion 50:158–167

    Article  Google Scholar 

  • Zhang P, Liu GX, Gao WF (2019) Distinguishing two types of labels for multi-label feature selection. Pattern Recogn 95:72–82

    Article  Google Scholar 

  • Zhang M, Ding C, Zhang Y (2014) Feature selection at the discrete limit. Twenty-Eighth AAAI conference on artificial intelligence

  • Zhu PF, Hu QH, Zhang CQ (2016) Coupled dictionary learning for unsupervised feature selection. In: The 30th AAAI conference on artificial intelligence 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingcang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, Y., Yang, X. et al. Semi-supervised multi-label feature selection with local logic information preserved. Adv. in Comp. Int. 1, 7 (2021). https://doi.org/10.1007/s43674-021-00008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43674-021-00008-6

Keywords

Navigation