Skip to main content
Log in

Europium-based β-hydroxyketone complexes: synthesis, optoelectronic, thermal and computational analyses

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Six red-light-emitting Eu(III) complexes having a β-hydroxyketone as ligand and heterocyclic ring containing compounds as ancillary ligands were synthesized to explore their use in displays and optoelectronics. The coordinating behavior of complexes was determined by various techniques such as FTIR (Fourier transform infrared), 1H-NMR (Nuclear magnetic resonance), and 13C-NMR that establishes a bonding of ligand and ancillary ligand with the Eu(III) ion. Morphology and purity were investigated through XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDS (energy-dispersive X-ray spectroscopy) analyses that suggest semicrystalline and pure complex formation. Thermal analysis of complexes by TGA/DTG (thermogravimetric/derivative thermogravimetric) indicates that complexes are stable upto 200 ºC temperature making them suitable for use in display devices. Analysis of the photophysical properties was carried out in both solid and solution states using PL (photoluminescence) studies, color parameters, J–O (Judd–Ofelt) analysis and bandgap. Most emissive transition (5D0 → 7F2) is responsible for the red emission in the complexes. The CIE (Commission International de I’Eclairage) coordinates of complexes also indicate the red emission on UV excitation. The bandgap which was obtained in the range of 2.54–3.02 eV reveals the semiconducting behavior of complexes. Values of J–O parameters and Ω2 in the complexes reflect asymmetric chemical environment around Eu (III) and less covalence and the Ω4 indicates that complexes are less rigid. Bandgap calculated through DFT (density function theory) for complexes is in range of 2.37–2.77 eV, and intensity parameters (J–O), energy transfer rates, and spherical coordinates were determined by LUMPAC software. The computational data are in good harmony with the experimental data. Further biological aspects of complexes were studied using antioxidant and antimicrobial studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All studied information are included in this article and its supplementary information.

Code availability

No software or any computational study was not used in this study.

References

  1. Al-Busaidi, I. J., Ilmi, R., Zhang, D., Dutra, J. D. L., Oliveira, W. F., Al Rasbi, N. K., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2022). Synthesis and photophysical properties of ternary β-diketonate europium(III) complexes incorporating bipyridine and its derivatives. Dyes and Pigments, 197, 109879.

    Article  CAS  Google Scholar 

  2. Ilmi, R., Wang, J., Dutra, J. D. L., Zhou, L., Wong, W., Raithby, P. R., & Khan, M. S. (2023). Efficient red organic light emitting diodes of nona coordinate europium tris (β-diketonato) complexes bearing 4′-phenyl-2, 2′: 6′, 2′′-terpyridine. Chemistry-A European Journal, 29, e202300376.

    Article  CAS  PubMed  Google Scholar 

  3. Ilmi, R., Li, X., Al Rasbi, N. K., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2023). Two new red-emitting ternary europium (III) complexes with high photoluminescence quantum yields and exceptional performance in OLED devices. Dalton Transactions, 52, 12885–12891.

    Article  CAS  PubMed  Google Scholar 

  4. Ilmi, R., Zhang, D., Tensi, L., Al-Sharji, H., Al Rasbi, N. K., Macchioni, A., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2022). Salts of lanthanide (III) hexafluoroacetylacetonates [Ln= Sm (III), Eu (III) and Tb (III)] with dipyridylammonium cations: Synthesis, characterization, photophysical properties and OLED fabrication. Dyes and Pigments, 203, 110300.

    Article  CAS  Google Scholar 

  5. Weissman, S. I. (1942). Intramolecular energy transfer the fluorescence of complexes of europium. The Journal of Chemical Physics, 10, 214–217.

    Article  CAS  Google Scholar 

  6. Sizov, V. S., Komissar, D. A., Metlina, D. A., Aminev, D. F., Ambrozevich, S. A., Nefedov, S. E., Varaksina, E. A., Metlin, M. T., Mislavskií, V. V., & Taydakov, I. V. (2020). Effect of ancillary ligands on visible and NIR luminescence of Sm3+ β-diketonate complexes. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 225, 117503.

    Article  CAS  PubMed  Google Scholar 

  7. Ilmi, R., Anjum, S., Haque, A., & Khan, M. S. (2019). A new brilliant red emitting Eu (III) ternary complex and its transparent flexible and photostable poly (urethane) hybrid thin film for optoelectronic applications. Journal of Photochemistry and Photobiology A: Chemistry, 383, 111968.

    Article  CAS  Google Scholar 

  8. Korshunov, V. M., Ambrozevich, S. A., Taydakov, I. V., Vashchenko, A. A., Goriachiy, D. O., Selyukov, A. S., & Dmitrienko, A. O. (2019). Novel β-diketonate complexes of Eu3+ bearing pyrazole moiety for bright photo-and electroluminescence. Dyes and Pigments, 163, 291–299.

    Article  CAS  Google Scholar 

  9. Kumar, R., Makrandi, J. K., Singh, I., & Khatkar, S. P. (2008). Preparation and photoluminescent properties of europium complexes with methoxy derivatives of 2′-hydroxy-2-phenylacetophenones. Journal of Luminescence, 128, 1297–1302.

    Article  CAS  Google Scholar 

  10. Døssing, A. (2005). Luminescence from lanthanide (3+) ions in solution. European Journal of Inorganic Chemistry, 2005, 1425–1434.

    Article  Google Scholar 

  11. Vicentini, G., Zinner, L. B., Zukerman-Schpector, J., & Zinner, K. (2000). Luminescence and structure of europium compounds. Coordination Chemistry Reviews, 196, 353–382.

    Article  CAS  Google Scholar 

  12. Beeby, A., Clarkson, I. M., Dickins, R. S., Faulkner, S., Parker, D., Royle, L., De Sousa, A. S., Williams, J. A. G., & Woods, M. (1999). Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: An improved luminescence method for establishing solution hydration states. Journal of the Chemical Society Perkin Transactions, 2, 493–504.

    Article  Google Scholar 

  13. Wu, J., Li, H.-Y., Xu, Q.-L., Zhu, Y.-C., Tao, Y.-M., Li, H.-R., Zheng, Y.-X., Zuo, J.-L., & You, X.-Z. (2010). Synthesis and photoluminescent properties of series ternary lanthanide (Eu (III), Sm (III), Nd (III), Er (III), Yb (III)) complexes containing 4, 4, 4-trifluoro-1-(2-naphthyl)-1, 3-butanedionate and carbazole-functionalized ligand. Inorganica Chim. Acta, 363, 2394–2400.

    Article  CAS  Google Scholar 

  14. Nandal, P., Kumar, R., Khatkar, A., Khatkar, S. P., & Taxak, V. B. (2016). Synthesis, characterization, enhanced photoluminescence, antimicrobial and antioxidant activities of novel Sm (III) complexes containing 1-(2-hydroxy-4, 6-dimethoxyphenyl) ethanone and nitrogen containing ancillary ligands. Journal of Materials Science: Materials in Electronics, 27, 878–885.

    CAS  Google Scholar 

  15. Khanagwal, J., Kumar, R., Bedi, M., Khatkar, S. P., & Taxak, V. B. (2021). Enhanced optoelectronic and biological potential of virescent-glowing terbium(III) complexes with pyrazole acid. Journal of Electronic Materials, 50, 2656–2668.

    Article  CAS  Google Scholar 

  16. Kumar, R., Makrandi, J. K., Singh, I., & Khatkar, S. P. (2008). Synthesis, characterizations and luminescent properties of terbium complexes with methoxy derivatives of 2′-hydroxy-2-phenylacetophenone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 1119–1124.

    Article  PubMed  Google Scholar 

  17. Ahlawat, P., Kumari, P., Lather, V., Taxak, V. B., Khatkar, S. P., & Kumar, R. (2023). Synthesis and photo-physics of luminescent Sm (III) complexes derived from β-hydroxyketone and heterocyclic ancillary ligands. Journal of Molecular Structure, 1281, 135140.

    Article  CAS  Google Scholar 

  18. Nehra, K., Dalal, A., Hooda, A., Singh, S., Singh, D., & Kumar, S. (2022). Spectroscopic and optical investigation of 1, 10-phenanthroline based Tb (III) β-diketonate complexes. Inorganica Chimica Acta, 536, 120860.

    Article  CAS  Google Scholar 

  19. Hooda, A., Nehra, K., Dalal, A., Singh, S., Kumar Saini, R., Kumar, S., & Singh, D. (2022). Terbium complexes of an asymmetric β-diketone: Preparation, photophysical and thermal investigation. Inorganica Chimica Acta, 536, 120881.

    Article  CAS  Google Scholar 

  20. Ilmi, R., Yin, J., Dutra, J. D. L., Al Rasbi, N. K., Oliveira, W. F., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2022). Single component white-OLEDs derived from tris (β-diketonato) europium (III) complexes bearing the large bite angle N^ N 2-(4-thiazolyl) benzimidazole ligand. Dalton Transactions, 51, 14228–14242.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H., He, P., Yan, H., & Gong, M. (2011). Synthesis, characteristics and luminescent properties of a new europium (III) organic complex applied in near UV LED. Sensors Actuators B Chemistry, 156, 6–11.

    Article  CAS  Google Scholar 

  22. Nandal, P., Khatkar, S. P., Kumar, R., Khatkar, A., & Taxak, V. B. (2017). Synthesis, optical investigation and biological properties of europium (III) complexes with 2-(4-chlorophenyl)-1-(2-hydroxy-4-methoxyphenyl) ethan-1-one and ancillary ligands. Journal of Fluorescence, 27, 1–11.

    Article  CAS  PubMed  Google Scholar 

  23. Balasubramanian, S., & Nair, M. G. (2000). An efficient “one pot” synthesis of isoflavones. Synthetic Communications, 30, 469–484.

    Article  CAS  Google Scholar 

  24. Tian, H.-R., Liu, Y.-W., Zhang, Z., Liu, S.-M., Dang, T.-Y., Li, X.-H., Sun, X.-W., Lu, Y., & Liu, S.-X. (2020). A multicentre synergistic polyoxometalate-based metal–organic framework for one-step selective oxidative cleavage of β-O-4 lignin model compounds. Green Chemistry, 22, 248–255.

    Article  CAS  Google Scholar 

  25. Bassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., De Cola, L., & Pikramenou, Z. (2004). Highly luminescent, triple-and quadruple-stranded, dinuclear Eu, Nd, and Sm (III) lanthanide complexes based on bis-diketonate ligands. Journal of the American Chemical Society, 126, 9413–9424.

    Article  CAS  PubMed  Google Scholar 

  26. Irfanullah, M., & Iftikhar, K. (2011). A comparative study of 1H NMR and sensitized visible light emission of an extended series of dinuclear lanthanide complexes. Journal of Photochemistry and Photobiology A: Chemistry, 224, 91–101.

    Article  CAS  Google Scholar 

  27. Ahmed, I., Atta, A. H., & Refat, M. S. (2014). Complexation of gadolinium (III) and terbium (III) with nalidixicacid (NDX): Molar conductivity, thermal and spectral investigation. International Journal of Electrochemical Science, 9, 5187–5203.

    Article  Google Scholar 

  28. Khatri, S., Bala, M., Hooda, P., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Utilization of Judd–Ofelt theory to assess the photophysical properties of β-keto carboxylate Tb (III) complexes with heterocyclic secondary sensitizer. Optical Materials (Amsterdam), 131, 112629.

    Article  CAS  Google Scholar 

  29. Costa, J. C. S., Taveira, R. J. S., Lima, C. F., Mendes, A., & Santos, L. M. (2016). Optical band gaps of organic semiconductor materials. Optical Materials (Amsterdam), 58, 51–60.

    Article  CAS  Google Scholar 

  30. Khatri, S., Bala, M., Kumari, P., Kumar, M., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Optical and photophysical portrayal of Sm3+ complexes possessing two band gaps for relevance in solar cells and photovoltaic devices. Journal Molecular Structures, 4, 132847.

    Article  Google Scholar 

  31. Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92, 1324.

    Article  CAS  Google Scholar 

  32. Dimova-Malinovska, D., Nichev, H., & Angelov, O. (2008). Correlation between the stress in ZnO thin films and the Urbach band tail width. Physica Status Solidi C, 5, 3353–3357.

    Article  CAS  Google Scholar 

  33. Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews Computational Molecular Science, 2, 73–78.

    Article  CAS  Google Scholar 

  34. Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica, 1, 104–113.

    Article  Google Scholar 

  35. Vijayaraj, R., Subramanian, V., & Chattaraj, P. K. (2009). Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. Journal of Chemical Theory and Computation, 5, 2744–2753.

    Article  CAS  PubMed  Google Scholar 

  36. Ilmi, R., & Iftikhar, K. (2012). Pyrazine bridged Ln2 (La, Nd, Eu and Tb) complexes containing fluorinated β-diketone. Inorganic Chemistry Communications, 20, 7–12.

    Article  CAS  Google Scholar 

  37. Wang, Y., Zheng, X., Zhuang, W., & Jin, L. (2003). Hydrothermal synthesis and characterization of novel lanthanide 2, 2′-diphenyldicarboxylate complexes. European Journal of Inorganic Chemistry, 2003, 1355–1360.

    Article  Google Scholar 

  38. Xue, F., Ma, Y., Fu, L., Hao, R., Shao, G., Tang, M., Zhang, J., & Wang, Y. (2010). A europium complex with enhanced long-wavelength sensitized luminescent properties. Physical Chemistry Chemical Physics: PCCP, 12, 3195–3202.

    Article  CAS  PubMed  Google Scholar 

  39. Kirby, A. F., Foster, D., & Richardson, F. S. (1983). Comparison of 7FJ← 5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry. Chemical Physics Letters, 95, 507–512.

    Article  CAS  Google Scholar 

  40. McCamy, C. S. (1992). Correlated color temperature as an explicit function of chromaticity coordinates. Color Research and Application, 17, 142–144.

    Article  Google Scholar 

  41. Khajuria, P., Mahajan, R., Kumar, S., Prakash, R., Choudhary, R. J., & Phase, D. M. (2020). Surface and spectral investigation of Sm3+ doped MgO–ZrO2 phosphor. Optik (Stuttg), 216, 164909.

    Article  CAS  Google Scholar 

  42. Liu, J.-Y., Ren, N., Zhang, J.-J., & Zhang, C.-Y. (2013). Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1, 10-phenanthroline. Thermochimica Acta, 570, 51–58.

    Article  CAS  Google Scholar 

  43. Gago, S., Fernandes, J. A., Rainho, J. P., Sá Ferreira, R. A., Pillinger, M., Valente, A. A., Santos, T. M., Carlos, L. D., Ribeiro-Claro, P. J. A., & Gonçalves, I. S. (2005). Highly luminescent tris (β-diketonate) europium (III) complexes immobilized in a functionalized mesoporous silica. Chemical Materials, 17, 5077–5084.

    Article  CAS  Google Scholar 

  44. Soares-Santos, P. C. R., Nogueira, H. I. S., Félix, V., Drew, M. G. B., Sá Ferreira, R. A., Carlos, L. D., & Trindade, T. (2003). Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles. Chemical Materials, 15, 100–108.

    Article  CAS  Google Scholar 

  45. Ferreira, R., Pires, P., de Castro, B., Ferreira, R. A. S., Carlos, L. D., & Pischel, U. (2004). Zirconium organophosphonates as photoactive and hydrophobic host materials for sensitized luminescence of Eu (III), Tb (III), Sm (III) and Dy (III). New Journal of Chemistry, 28, 1506–1513.

    Article  CAS  Google Scholar 

  46. Ilmi, R., Zhang, D., Dutra, J. D. L., Dege, N., Zhou, L., Wong, W.-Y., Raithby, P. R., & Khan, M. S. (2021). A tris β-diketonate europium (III) complex based OLED fabricated by thermal evaporation method displaying efficient bright red emission. Organic Electronics, 96, 106216.

    Article  CAS  Google Scholar 

  47. Beltaif, M., Dammak, M., Megdiche, M., & Guidara, K. (2016). Synthesis, optical spectroscopy and Judd–Ofelt analysis of Eu3+ doped Li2BaP2O7 phosphors. Journal of Luminescence, 177, 373–379.

    Article  CAS  Google Scholar 

  48. Al-Busaidi, I. J., Ilmi, R., Dutra, J. D. L., Oliveira, W. F., Haque, A., Al Rasbi, N. K., Marken, F., Raithby, P. R., & Khan, M. S. (2021). Utilization of a Pt (II) di-yne chromophore incorporating a 2, 2′-bipyridine-5, 5′-diyl spacer as a chelate to synthesize a green and red emitting d–f–d heterotrinuclear complex. Dalton Transactions, 2021(50), 1465–1477.

    Article  Google Scholar 

  49. Ilmi, R., & Iftikhar, K. (2016). Structure elucidation by sparkle/RM1, effect of lanthanide contraction and photophysical properties of lanthanide (III) trifluoroacetylacetonate complexes with 1, 10-phenanthroline. Journal of Photochemistry and Photobiology A: Chemistry, 325, 68–82.

    Article  CAS  Google Scholar 

  50. Raj, D. B. A., Francis, B., Reddy, M. L. P., Butorac, R. R., Lynch, V. M., & Cowley, A. H. (2010). Highly luminescent poly (methyl methacrylate)-incorporated europium complex supported by a carbazole-based fluorinated β-diketonate ligand and a 4, 5-bis (diphenylphosphino)-9, 9-dimethylxanthene oxide co-ligand. Inorganic Chemistry, 49, 9055–9063.

    Article  CAS  PubMed  Google Scholar 

  51. Yu, X., & Su, Q. (2003). Photoacoustic and luminescence properties study on energy transfer and relaxation processes of Tb (III) complexes with benzoic acid. Journal of Photochemistry and Photobiology A: Chemistry, 155, 73–78.

    Article  CAS  Google Scholar 

  52. Latva, M., Takalo, H., Mukkala, V.-M., Matachescu, C., Rodríguez-Ubis, J. C., & Kankare, J. (1997). Correlation between the lowest triplet state energy level of the ligand and lanthanide (III) luminescence quantum yield. Journal of Luminescence, 75, 149–169.

    Article  CAS  Google Scholar 

  53. Kumar, V. R., Veeraiah, N., Rao, B. A., & Bhuddudu, S. (1998). Optical absorption and photoluminescence properties of Eu3+-doped ZnF2–PbO–TeO2 glasses. Journal of Materials Science, 33, 2659–2662.

    Article  CAS  Google Scholar 

  54. Wang, X., Sun, K., Wang, L., Tian, X., Zhang, Q., & Chen, B. (2012). Effect on the fluorescence branching ratio of different synergistic ligands in neodymium complex doped PMMA. Journal of Non-Crystalline Solids, 358, 1506–1510.

    Article  CAS  Google Scholar 

  55. Linganna, K., & Jayasankar, C. K. (2012). Optical properties of Eu3+ ions in phosphate glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 788–797.

    Article  CAS  PubMed  Google Scholar 

  56. Patel, J., Dholariya, H., Patel, K., Bhatt, J., & Patel, K. (2014). Cu (II) and Ni (II) complexes of coumarin derivatives with fourth generation flouroquinolone: Synthesis, characterization, microbicidal and antioxidant assay. Medicinal Chemistry Research, 23, 3714–3724.

    Article  CAS  Google Scholar 

  57. Tümer, M., Köksal, H., Sener, M. K., & Serin, S. (1999). Antimicrobial activity studies of the binuclear metal complexes derived from tridentate Schiff base ligands. Transition Metal Chemistry, 24, 414–420.

    Article  Google Scholar 

  58. Hooda, P., Taxak, V. B., Malik, R. K., Khatri, S., Kumari, P., Khatkar, S. P., & Kumar, R. (2022). Applicability of reddish-orange light emitting samarium (III) complexes for biomedical and multifunctional optoelectronic devices. Journal of Fluorescence, 3, 1–15.

    Google Scholar 

  59. Kumari, P., Khatri, S., Kumar, M., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Urbach and Judd–Ofelt analysis of crystalline samarium (III) complexes with β-ketocarboxylate and nitrogen donor secondary ligands. Polyhedron, 4, 115847.

    Article  Google Scholar 

  60. Khatri, S., Bala, M., Kumari, P., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Judd–Ofelt, optical and photophysical analysis of β-ketocarboxylate Sm(III) complexes with N-donor aromatic system as secondary sensitizers. Optical Materials (Amsterdam), 128, 112463.

    Article  CAS  Google Scholar 

  61. Ahlawat, P., Lather, V., Bhayana, S., Khatri, S., Hooda, P., Kumari, P., Taxak, V. B., Khatkar, S. P., & Kumar, R. (2022). Synthesis and photosensitization study of red luminescent europium (III) complexes with heterocyclic ligands for application in OLEDs. Inorganic Chemistry Communications, 5, 109720.

    Article  Google Scholar 

  62. Hooda, P., Taxak, V. B., Malik, R. K., Punia, M., Ahlawat, P., Khatkar, S. P., & Kumar, R. (2021). Designing of emerald terbium (III) ions with β-ketocarboxylic acid and heterocyclic ancillary ligands for biological and optoelectronic applications. Luminescence, 36, 1658–1670.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors, Pratibha Ahlawat, admiringly acknowledges the Department of UIET and Department of Chemistry, Maharshi Dayanand University, Rohtak for providing instrumental facilities and University Grants Commission (UGC) in New Delhi, India in for providing funding in the form of senior research fellowship (SRF) {Award no: 16-6(Dec.2017)/2018(NET/CSIR)} to finish this work.

Funding

Pratibha Ahlawat, one of the authors, is grateful for the financial support from University Grants Commission (UGC) in New Delhi, India in form of senior research fellowship (SRF) (Award no: {Award no: 16-6(Dec.2017)/2018(NET/CSIR)}) to finish this work.

Author information

Authors and Affiliations

Authors

Contributions

Pratibha Ahlawat performed the experimental works, data collection, analysis, interpretation and wrote the original manuscript. Poonam Kumari and Bhawna Rathee contributed to the experimental and review of manuscript. Vaishnavi Lather helped in the analysis of biological properties. Rajesh Kumar contributed to the supervision, technical support, editing functions and manuscript review.

Corresponding author

Correspondence to Rajesh Kumar.

Ethics declarations

Conflict of interest

The authors say no conflict of interest regarding this research work.

Ethical approval/declarations

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 26381 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlawat, P., Kumari, P., Lather, V. et al. Europium-based β-hydroxyketone complexes: synthesis, optoelectronic, thermal and computational analyses. Photochem Photobiol Sci (2024). https://doi.org/10.1007/s43630-024-00561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43630-024-00561-2

Keywords

Navigation