Skip to main content
Log in

Impact of luminescent-ion doping on the crystallographic and photo-physical properties of the CaMoO4 nanoparticles

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Luminescent lanthanide (Ln3+ = Pr, Nd, Sm, Eu, and Tb)-ions doped calcium molybdate(CaMoO4) nanoparticles(NPs) were prepared by the polyol wet-chemical route. X-ray diffraction (XRD) pattern of all samples showed the formation of a single-phase scheelite type tetragonal structure with an average crystalline size over 21.6–33.4 nm. Thermal stability was evaluated to study the surface-anchored functional groups by weight loss measurement. Fourier transform infrared (FTIR) spectra were recorded to identify the adsorbed functional groups. Aqueous dispersibility and colloidal stability were recorded with the help of the UV/visible absorption spectra. These nanocrystals formed semi-transparent colloidal solutions after being evenly disseminated in aqueous media. The doping of the luminescent ions significantly affects the crystal structure and photoluminescence (PL) properties of the CaMoO4:Ln3+ NPs. In a comparative analysis of the absorption spectra, bandgap, Raman-active modes, and luminescent properties, they were greatly influenced by altering the dopant ion due to the variation in the atomic radius of the element. The doping of smaller atomic radius Ln3+-ions distorts the unit cell, and, subsequently, bond angle/length alters the symmetry of the host crystal. The distorted crystal lattice affects the crystalline, size, lattice parameter, band gap values, Raman active vibrational modes, and luminescent efficiency. The distorted crystal structure of the host lattices facilitates the movement of the oxygen vacancies through charge transfer, resulting in efficiently suppressed emission efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ansari, A. A., & Sillanpää, M. (2021). Advancement in upconversion nanoparticles based NIR-driven photocatalysts. Renewable and Sustainable Energy Reviews, 151, 111631.

    Article  CAS  Google Scholar 

  2. Ansari, A. A., Parchur, A. K., Nazeeruddin, M. K., & Tavakoli, M. M. (2021). Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coordination Chemistry Reviews, 444, 214040.

    Article  CAS  Google Scholar 

  3. Ansari, A. A., Parchur, A. K., Thorat, N. D., & Chen, G. (2021). New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coordination Chemistry Reviews, 440, 213971.

    Article  CAS  Google Scholar 

  4. Ansari, A. A., Thakur, V. K., & Chen, G. (2021). Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coordination Chemistry Reviews, 436, 213821.

    Article  CAS  Google Scholar 

  5. Stouwdam, J. W., Shan, J., van Veggel, F. C. J. M., Pattantyus-Abraham, A. G., Young, J. F., & Raudsepp, M. (2007). Photostability of colloidal PbSe and PbSe/PbS core/shell nanocrystals in solution and in the solid state. Journal of Physical Chemistry C, 111, 1086–1092.

    Article  CAS  Google Scholar 

  6. Ji, H., Wang, L., Molokeev, M. S., Hirosaki, N., Xie, R., Huang, Z., Xia, Z., ten Kate, O. M., Liu, L., & Atuchin, V. V. (2016). Structure evolution and photoluminescence of Lu3(Al, Mg)2(Al, Si)3O12:Ce3+ phosphors: New yellow-color converters for blue LED-driven solid state lighting. Journal of Materials Chemistry C, 4, 6855–6863.

    Article  CAS  Google Scholar 

  7. Ansari, A. A., Muthumareeswaran, M. R., & Lv, R. (2022). Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coordination Chemistry Reviews, 466, 214584.

    Article  CAS  Google Scholar 

  8. Ansari, A. A., Aldajani, K. M., AlHazaa, A. N., & Albrithen, H. A. (2022). Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coordination Chemistry Reviews, 462, 214523.

    Article  CAS  Google Scholar 

  9. Ansari, A. A., Parchur, A. K., & Chen, G. (2022). Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coordination Chemistry Reviews, 457, 214423.

    Article  CAS  Google Scholar 

  10. Kang, X. J., Cheng, Z. Y., Li, C. X., Yang, D. M., Shang, M. M., Ma, P. A., Li, G. G., Liu, N. A., & Lin, J. (2011). Core-shell structured up-conversion luminescent and mesoporous NaYF4:Yb3+/Er3+@nSiO(2)@mSiO(2) nanospheres as carriers for drug delivery. Journal of Physical Chemistry C, 115, 15801–15811.

    Article  CAS  Google Scholar 

  11. Dixit, P., Chauhan, V., Kumar, P., & Pandey, P. C. (2020). Enhanced photoluminescence in CaMoO4:Eu3+ by Mn2+ co-doping. Journal of Luminescence, 223, 117240.

    Article  CAS  Google Scholar 

  12. Dixit, P., Chauhan, V., Pandey, P. K., & Pandey, P. C. (2023). Improvement in luminescence of thermally stable CaMoO4:Tb3+ green phosphor by Bi3+ ions. Materials Chemistry and Physics, 305, 127913.

    Article  CAS  Google Scholar 

  13. Parchur, A. K., & Ningthoujam, R. S. (2011). Preparation and structure refinement of Eu3+ doped CaMoO4 nanoparticles. Dalton Transactions, 40, 7590–7594.

    Article  CAS  PubMed  Google Scholar 

  14. Parchur, A. K., Ningthoujam, R. S., Rai, S. B., Okram, G. S., Singh, R. A., Tyagi, M., Gadkari, S. C., Tewari, R., & Vatsa, R. K. (2011). Luminescence properties of Eu3+ doped CaMoO4 nanoparticles. Dalton Transactions, 40, 7595–7601.

    Article  CAS  PubMed  Google Scholar 

  15. Parchur, A. K., Kaurav, N., Ansari, A. A., Prasad, A. I., Ningthoujam, R. S., & Rai, S. B. (2013). CaMoO4:Tb@Fe3O4 hybrid nanoparticles for luminescence and hyperthermia applications. Solid State Physics, 57(1512), 184–185.

    Google Scholar 

  16. Dixit, P., Chauhan, V., Rai, S. B., & Pandey, P. C. (2022). Realization of neutral white light emission in CaMoO4:4Dy3+ phosphor via Sm3+co-doping. Journal of Alloys and Compounds, 897, 162820.

    Article  CAS  Google Scholar 

  17. Parchur, A. K., Prasad, A. I., Ansari, A. A., Rai, S. B., & Ningthoujam, R. S. (2012). Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: Annealing effect, polar medium dispersible, polymer film and core-shell formation. Dalton Transactions, 41, 11032–11045.

    Article  CAS  PubMed  Google Scholar 

  18. Singh, B. P., Parchur, A. K., Ningthoujam, R. S., Ansari, A. A., Singh, P., & Rai, S. B. (2014). Enhanced photoluminescence in CaMoO4:Eu3+ by Gd3+ co-doping. Dalton Transactions, 43, 4779–4789.

    Article  CAS  PubMed  Google Scholar 

  19. Singh, B. P., Parchur, A. K., Ningthoujam, R. S., Ansari, A. A., Singh, P., & Rai, S. B. (2014). Influence of Gd3+ co-doping on structural property of CaMoO4: Eu nanoparticles. Dalton Transactions, 43, 4770–4778.

    Article  CAS  PubMed  Google Scholar 

  20. Lim, C. S., Aleksandrovsky, A. S., Molokeev, M. S., Oreshonkov, A. S., Ikonnikov, D. A., & Atuchin, V. V. (2016). Triple molybdate scheelite-type upconversion phosphor NaCaLa(MoO4)3:Er3+/Yb3+: Structural and spectroscopic properties. Dalton Transactions, 45, 15541–15551.

    Article  CAS  PubMed  Google Scholar 

  21. Ansari, A. A., Parchur, A. K., Alam, M., & Azzeer, A. (2014). Effect of surface coating on optical properties of Eu3+-doped CaMoO4 nanoparticles. Spectrochim Acta A, 131, 30–36.

    Article  CAS  Google Scholar 

  22. Ansari, A. A., & Alam, M. (2015). Optical and structural studies of CaMoO4:Sm, CaMoO4:Sm@CaMoO4 and CaMoO4:Sm@CaMoO4@SiO2 core-shell nanoparticles. Journal of Luminescence, 157, 257–263.

    Article  CAS  Google Scholar 

  23. Ansari, A. A., Parchur, A. K., Alam, M., & Azzeer, A. (2014). Structural and photoluminescence properties of Tb-doped CaMoO4 nanoparticles with sequential surface coatings. Materials Chemistry and Physics, 147, 715–721.

    Article  CAS  Google Scholar 

  24. Marques, V. S., Cavalcante, L. S., Sczancoski, J. C., Alcantara, A. F. P., Orlandi, M. O., Moraes, E., Longo, E., Varela, J. A., Li, M. S., & Santos, M. R. M. C. (2010). Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Crystal Growth & Design, 10, 4752–4768.

    Article  CAS  Google Scholar 

  25. Raju, G. S. R., Pavitra, E., Ko, Y. H., & Yu, J. S. (2012). A facile and efficient strategy for the preparation of stable CaMoO4 spherulites using ammonium molybdate as a molybdenum source and their excitation induced tunable luminescent properties for optical applications. Journal of Materials Chemistry, 22, 15562–15569.

    Article  CAS  Google Scholar 

  26. Longo, V. M., Cavalcante, L. S., Paris, E. C., Sczancoski, J. C., Pizani, P. S., Li, M. S., Andrés, J., Longo, E., & Varela, J. A. (2011). Hierarchical assembly of CaMoO4 nano-octahedrons and their photoluminescence properties. The Journal of Physical Chemistry C, 115, 5207–5219.

    Article  CAS  Google Scholar 

  27. Parchur, A. K., Okram, G. S., Singh, R. A., Tewari, R., Pradhan, L., Vatsa, R. K., & Ningthoujam, R. S. (2010). Effect of EDTA on luminescence property of Eu+3 doped YPO4 nanoparticles. In International conference on physics of emerging functional materials (Pefm-2010) (Vol. 1313, p. 391).

  28. Almeida, C. R. R., Lovisa, L. X., Santiago, A. A. G., Li, M. S., Longo, E., Paskocimas, C. A., Motta, F. V., & Bomio, M. R. D. (2017). One-step synthesis of CaMoO4: Eu3+ nanospheres by ultrasonic spray pyrolysis. Journal of Materials Science: Materials in Electronics, 28, 16867–16879.

    CAS  Google Scholar 

  29. Laguna, M., Nunez, N. O., Becerro, A. I., & Ocana, M. (2017). Morphology control of uniform CaMoO4 microarchitectures and development of white light emitting phosphors by Ln doping (Ln = Dy3+, Eu3+). CrystEngComm, 19, 1590–1600.

    Article  CAS  Google Scholar 

  30. Singh, B. P., Ramakrishna, P. V., Singh, S., Sonu, V. K., Singh, S., Singh, P., Bahadur, A., Singh, R. A., & Rai, S. B. (2015). Improved photo-luminescence behaviour of Eu3+ activated CaMoO4 nanoparticles via Zn2+ incorporation. Rsc Advances, 5, 55977–55985.

    Article  CAS  Google Scholar 

  31. Ansari, A. A., Parchur, A. K., Alam, M., Labis, J., & Azzeer, A. (2014). Influence of surface coating on structural and photoluminescent properties of CaMoO4: Pr nanoparticles. Journal of Fluorescence, 24, 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  32. Gayatri Sharma, K., & Rajmuhon Singh, N. (2013). Synthesis and luminescence properties of CaMO4:Dy3+ (M = W, Mo) nanoparticles prepared via an ethylene glycol route. New Journal of Chemistry, 37, 2784–2791.

    Article  CAS  Google Scholar 

  33. Ansari, A. A., Labis, J. P., & Khan, A. (2022). Facile synthesized NaGdF4:Yb, Er peanut-shaped, highly biocompatible, colloidal upconversion nanospheres. Luminescence, 37, 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  34. Han, Y., Wang, L., Wang, D., Liang, D., Wang, S., Lu, G., Di, Z., & Jia, G. (2017). Lanthanide ions-doped calcium molybdate pie-like microstructures: Synthesis, structure characterization, and luminescent properties. Journal of Alloys and Compounds, 695, 3018–3023.

    Article  CAS  Google Scholar 

  35. Tranquilin, R. L., Lovisa, L. X., Almeida, C. R. R., Paskocimas, C. A., Li, M. S., Oliveira, M. C., Gracia, L., Andres, J., Longo, E., Motta, F. V., & Bomio, M. R. D. (2019). Understanding the white-emitting CaMoO4 co-doped Eu3+, Tb3+, and Tm3+ phosphor through experiment and computation. The Journal of Physical Chemistry C, 123, 18536–18550.

    Article  CAS  Google Scholar 

  36. Becerro, A. I., Allix, M., Laguna, M., González-Mancebo, D., Genevois, C., Caballero, A., Lozano, G., Núñez, N. O., & Ocaña, M. (2018). Revealing the substitution mechanism in Eu3+:CaMoO4 and Eu3+, Na+:CaMoO4 phosphors. Journal of Materials Chemistry C, 6, 12830–12840.

    Article  CAS  Google Scholar 

  37. Longo, V. M., de Figueiredo, A. T., Campos, A. B., Espinosa, J. W. M., Hernandes, A. C., Taft, C. A., Sambrano, J. R., Varela, J. A., & Longo, E. (2008). Different origins of green-light photoluminescence emission in structurally ordered and disordered powders of calcium molybdate. Journal of Physical Chemistry A, 112, 8920–8928.

    Article  CAS  PubMed  Google Scholar 

  38. Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Joya, M. R., Pizani, P. S., Varela, J. A., & Longo, E. (2008). BaMoO4 powders processed in domestic microwave-hydrothermal: Synthesis, characterization and photoluminescence at room temperature. Journal of Physics and Chemistry of Solids, 69, 2674–2680.

    Article  CAS  Google Scholar 

  39. Campos, A. B., Simões, A. Z., Longo, E., Varela, J. A., Longo, V. M., de Figueiredo, A. T., De Vicente, F. S., & Hernandes, A. C. (2007). Mechanisms behind blue, green, and red photoluminescence emissions in CaWO4 and CaMoO4 powders. Applied Physics Letters, 91, 051923.

    Article  Google Scholar 

  40. Grzyb, T., Runowski, M., Szczeszak, A., & Lis, S. (2013). Structural, morphological and spectroscopic properties of Eu3+-doped rare earth fluorides synthesized by the hydrothermal method. Journal of Solid State Chemistry, 200, 76–83.

    Article  CAS  Google Scholar 

  41. Yang, P. P., Li, C. X., Wang, W. X., Quan, Z. W., Gai, S. L., & Lin, J. (2009). Uniform AMoO(4): Ln (A = Sr2+, Ba2+; Ln = Eu3+, Tb3+) submicron particles: Solvothermal synthesis and luminescent properties. Journal of Solid State Chemistry, 182, 2510–2520.

    Article  CAS  Google Scholar 

  42. Luo, Y. S., Dai, X. J., Zhang, W. D., Yang, Y., Sun, C. Q., & Fu, S. Y. (2010). Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route. Dalton Transactions, 39, 2226–2231.

    Article  CAS  PubMed  Google Scholar 

  43. Dutta, S., Som, S., Kunti, A. K., Kumar, V., Sharma, S. K., Swart, H. C., & Visser, H. G. (2017). Structural and luminescence responses of CaMoO4 nano phosphors synthesized by hydrothermal route to swift heavy ion irradiation: Elemental and spectral stability. Acta Materialia, 124, 109–119.

    Article  CAS  Google Scholar 

  44. Verma, A., & Sharma, S. K. (2019). Rare-earth doped/codoped CaMoO4 phosphors: A candidate for solar spectrum conversion. Solid State Sciences, 96, 105945.

    Article  CAS  Google Scholar 

  45. Ansari, A. A., Alam, M., & Parchur, A. K. (2014). Nd-doped calcium molybdate core and particles: Synthesis, optical and photoluminescence studies. Applied Physics A: Materials Science and Processing, 116, 1719–1728.

    Article  CAS  Google Scholar 

  46. Tauc, J., & Menth, A. (1972). States in the gap. Journal of Non-Crystalline Solids, 8–10, 569–585.

    Article  Google Scholar 

  47. Pandey, A., Kumar, V., Som, S., Yousif, A., Kroon, R. E., Coetsee, E., & Swart, H. C. (2017). Photon and electron beam pumped luminescence of Ho3+ activated CaMoO4 phosphor. Applied Surface Science, 423, 1169–1175.

    Article  CAS  Google Scholar 

  48. Vidya, S., Solomon, S., & Thomas, J. K. (2012). Synthesis, sintering and optical properties of CaMoO4: A promising scheelite LTCC and photoluminescent material. Physica Status Solidi (A), 209, 1067–1074.

    Article  CAS  Google Scholar 

  49. Spassky, D., Ivanov, S., Kitaeva, I., Kolobanov, V., Mikhailin, V., Ivleva, L., & Voronina, I. (2005). Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure. Physica Status Solidi (C), 2, 65–68.

    Article  CAS  Google Scholar 

  50. Ansari, A. A. (2017). Comparative structural, optical, and photoluminescence studies of YF3:Pr, YF3:Pr@LaF3, and YF3:Pr@LaF3@SiO2 core-shell nanocrystals. Journal of the Chinese Chemical Society-Taipei, 64, 440–448.

    Article  CAS  Google Scholar 

  51. Ansari, A. A. (2017). Influence of surface functionalization on structural and photo-luminescence properties of CeF3: Tb nanoparticles. Applied Surface Science, 409, 285–290.

    Article  CAS  Google Scholar 

  52. Chung, J. H., Lee, S. Y., Shim, K. B., Kweon, S. Y., Ur, S. C., & Ryu, J. H. (2012). Blue upconversion luminescence of CaMoO4:Li+/Yb3+/Tm3+ phosphors prepared by complex citrate method. Applied Physics A-Materials Science & Processing, 108, 369–373.

    Article  CAS  Google Scholar 

  53. Ryu, J. H., Yoon, J.-W., Lim, C. S., & Shim, K. B. (2005). Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation. Materials Research Bulletin, 40, 1468–1476.

    Article  CAS  Google Scholar 

  54. Liu, J., Huang, X., Li, Y., & Li, Z. (2007). A general route to thickness-tunable multilayered sheets of sheelite-type metal molybdate and their self-assembled films. Journal of Materials Chemistry, 17, 2754–2758.

    Article  CAS  Google Scholar 

  55. Denisenko, Y. G., Atuchin, V. V., Molokeev, M. S., Sedykh, A. E., Khritokhin, N. A., Aleksandrovsky, A. S., Oreshonkov, A. S., Shestakov, N. P., Adichtchev, S. V., Pugachev, A. M., Sal’nikova, E. I., Andreev, O. V., Razumkova, I. A., & Müller-Buschbaum, K. (2022). Exploration of the crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2(SO4)3. Molecules, 27(13), 3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ansari, A. A., & Manthrammel, M. A. (2018). Physiochemical and optical properties of GdF3:Pr@LaF3@SiO2 microspheres. Materials Research-Ibero-American Journal of Materials, 21.

  57. Ansari, A. A., Labis, J. P., & Manthrammel, M. A. (2018). Synthesis, structural, and photoluminescence studies of LaF3:Pr, LaF3:Pr@LaF3, and LaF3:Pr@LaF3@SiO2 nanophosphors. Journal of the Australian Ceramic Society, 54, 493–500.

    Article  CAS  Google Scholar 

  58. Ansari, A. A., Labis, J. P., & Manthrammel, M. A. (2018). Comparative structural and optical spectroscopic studies of Nd3+ ion doped LaF3 and their core/shell nanoparticles. Processing and Application of Ceramics, 12, 78–85.

    Article  CAS  Google Scholar 

  59. Ansari, A. A. (2018). Effect of surface functionalization on structural and optical properties of luminescent LaF3: Sm nanoparticles. Journal of Nanoscience and Nanotechnology, 18, 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  60. Ansari, A. A. (2017). Photochemical studies of monodispersed YPO4: Eu microspheres: The role of surface modification on structural and luminescence properties. Journal of Photochemistry and Photobiology A, 343, 126–132.

    Article  CAS  Google Scholar 

  61. Ansari, A. A., Aldalbahi, A. K., Labis, J. P., & Manthrammel, M. A. (2017). Impact of surface coating on physical properties of europium-doped gadolinium fluoride microspheres. Journal of Fluorine Chemistry, 199, 7–13.

    Article  CAS  Google Scholar 

  62. Ansari, A. A. (2018). Silica-modified luminescent LaPO4:Eu@LaPO4@SiO2 core/shell nanorods: Synthesis, structural and luminescent properties. Luminescence, 33, 112–118.

    Article  CAS  PubMed  Google Scholar 

  63. Ansari, A. A. (2017). Effect of surface coating on structural and photophysical properties of CePO4:Tb, nanorods. Materials Science and Engineering: B-Advanced Functional Solid-State Materials, 222, 43–48.

    Article  CAS  Google Scholar 

  64. Ansari, A. A. (2017). Impact of surface coating on morphological, optical and photoluminescence properties of YF3:Tb3+ nanoparticles. Chinese Chemical Letters, 28, 651–657.

    Article  CAS  Google Scholar 

  65. Ansari, A. A., Rai, M., & Rai, S. B. (2017). Impact of LaF3 and silica shell formation on the crystal, optical and photo-luminescence properties of LaF3:Ce/Tb nanoparticles. Materials Chemistry Frontiers, 1, 727–734.

    Article  CAS  Google Scholar 

  66. Marques, A. P. A., Motta, F. V., Leite, E. R., Pizani, P. S., Varela, J. A., Longo, E., & de Melo, D. M. A. (2008). Evolution of photoluminescence as a function of the structural order or disorder in CaMoO4 nanopowders. Journal of Applied Physics, 104, 043505.

    Article  Google Scholar 

  67. Yoon, J. W., Choi, C. J., & Kim, D. (2011). Laser-induced synthesis of CaMoO4 nanocolloidal suspension and its optical properties. Materials Transactions, 52, 768–771.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Researchers Supporting Project Number (RSP2023R365), King Saud University, Riyadh, Saudi Arabia

Funding

The laboratory research work of this manuscript is supported by the Researchers Supporting Project Number (RSP2023R365), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees A. Ansari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.A., Khan, M.A.M. & Ameen, S. Impact of luminescent-ion doping on the crystallographic and photo-physical properties of the CaMoO4 nanoparticles. Photochem Photobiol Sci 22, 2357–2371 (2023). https://doi.org/10.1007/s43630-023-00456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00456-8

Keywords

Navigation