Skip to main content
Log in

Sulfonamide functionalized silica nano-composite: characterization and fluorescence “turn-on” detection of Fe3+ ions in aqueous samples

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have synthesized novel sulfonamide-based nano-composite (SAN) for selective and sensitive detection of Fe3+ ions in aqueous samples. Morphological characterization of SAN was carried out with TGA, FT-IR, UV–Vis, ninhydrin assay, FE-SEM, pXRD, BET, EDX, and elemental analysis. The sensing nature, effect of pH, sensor concentration and response time analysis were accomplished with the help of emission spectral studies and SAN was assessed as “turn-on” emission detector for the biologically important Fe3+ ions. Here, the LOD and LOQ were computed to be 26.68 nM and 88.93 nM, respectively, and it was found to be much lower than the permissible limit of Fe3+ ions in drinking water. The accuracy of the sensor (SAN) was determined by testing the aqueous samples spiked with known concentrations of Fe3+ ions and results demonstrated 98.00–99.66% recovery, which made SAN a reliable, selective and sensitive chemosensor for the quantification of Fe3+ ions in fully aqueous media.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 4
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed are included.

References

  1. Bhuvanesh, N., Velmurugam, K., Suresh, S., Prakash, P., John, N., Murugan, S., Daniel Thangadurai, T., & Nandhakumar, R. (2017). Naphthalene based fluorescent chemosensor for Fe2+-ion detection in microbes and real water samples. Journal of Luminescence, 188, 217–222. https://doi.org/10.1016/j.jlumin.2017.04.026

    Article  CAS  Google Scholar 

  2. Gregory, P. J., Wahbi, A., Adu-Gyamfi, J., Heiling, M., Gruber, R., Joy, E. J. M., & Broadly, M. R. (2017). Approaches to reduce zinc and iron deficits in food systems. Global Food Security, 15, 1–10. https://doi.org/10.31220/agriRxiv.2021.00033

    Article  Google Scholar 

  3. Sivaraman, G., Sathiyaraja, V., & Chellappa, D. (2014). Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging. Journal of Luminescence, 145, 480–485. https://doi.org/10.1039/C3RA45931D

    Article  CAS  Google Scholar 

  4. Camaschella, C. (2017). New insights into iron deficiency and iron deficiency anemia. Blood Reviews, 31, 225–233. https://doi.org/10.1016/j.blre.2017.02.004. Epub 2017 Feb 13.

    Article  CAS  PubMed  Google Scholar 

  5. Goswami, S., Aich, K., Das, A. K., Manna, A., & Das, S. (2013). A naphthalimide–quinoline based probe for selective, fluorescence ratiometric sensing of trivalent ions. RSC Advances, 3, 2412–2416. https://doi.org/10.1039/C2RA22624C

    Article  CAS  Google Scholar 

  6. Burdo, J. R., & Connor, J. R. (2003). Brain iron uptake and homeostatic mechanisms: An overview. BioMetals, 16, 63. https://doi.org/10.1016/S0306-4522(03)00590-6

    Article  CAS  PubMed  Google Scholar 

  7. Bonda, D. J., Lee, H., Blair, J. A., Zhu, X., Perrya, G., & Smith, M. A. (2011). Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 3, 267. https://doi.org/10.1039/c0mt00074d

    Article  CAS  PubMed  Google Scholar 

  8. Pithadia, A. S., & Lee, M. H. (2012). Metal-associated amyloid-β species in Alzheimer’s disease. Current Opinion in Chemical Biology, 16, 67. https://doi.org/10.1023/a:1020718718550

    Article  CAS  PubMed  Google Scholar 

  9. Sen, S., Sarkar, S., Chattopadhyay, B., Moirangthem, A., Basu, A., Dharad, K., & Chattopadhyay, P. (2012). A ratiometric fluorescent chemosensor for iron: Discrimination of Fe2+ and Fe3+ and living cell application. The Analyst, 137, 3335–3342. https://doi.org/10.1039/C2AN35258C

    Article  CAS  PubMed  Google Scholar 

  10. Shah, N., Ain, F., Ahmed, I., Anis, I., & Shah, M. R. (2017). A new highly selective chemosensor for the detection of iron ion in aqueous medium based on click generated triazole. Sensors and Actuators, B: Chemical, 249, 515–522. https://doi.org/10.1016/j.snb.2016.08.025

    Article  CAS  Google Scholar 

  11. Şenol, A. M., Onganer, Y., & Meral, K. (2017). An unusual “off-on” fluorescence sensor for iron (III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine. Sensors and Actuators B: Chemical, 239, 343–351. https://doi.org/10.1016/j.snb.2016.08.025

    Article  CAS  Google Scholar 

  12. Mameli, M., Aragoni, M. C., Arca, M., Caltagirone, C., Demartin, F., Farruggia, G., De Filippo, G., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V., Murgia, S., Prodi, L., Pintus, A., & Zaccheroni, N. (2010). A selective, nontoxic, off-on fluorescent molecular sensor based on 8-hydroxyquinoline for probing Cd2+ in living cells. Chemistry--A European Journal, 16, 919–930. https://doi.org/10.1002/chem.200902005

    Article  CAS  PubMed  Google Scholar 

  13. Chan, Y. H., Jin, Y., Wu, C., & Chiu, D. T. (2011). Copper(ii) and iron(ii) ion sensing with semiconducting polymer dots. Chemical Communications, 47, 2820–2822. https://doi.org/10.1039/C0CC04929H

    Article  CAS  PubMed  Google Scholar 

  14. Beutler, E., Felitti, V., Gelbart, T., & Ho, N. (2001). Genetics of iron storage and hemochromatosis. Drug Metabolism and Disposition, 29, 495–499. https://pubmed.ncbi.nlm.nih.gov/11259339/

  15. Touati, D. (2000). Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics, 373, 1–6. https://doi.org/10.1006/abbi.1999.1518

    Article  CAS  PubMed  Google Scholar 

  16. David, C. I., Prabakaran, G., Karuppasamy, A., Veetil, J. C., Kumar, R. S., Almansour, A. I., Perumal, K., Ramalingan, C., & Nandhakumar, R. (2022). A single carbazole based chemosensor for multiple targets: Sensing of Fe3+ and arginine by fluorimetry and its applications. Journal of Photochemistry and Photobiology A: Chemistry, 425, 113693. https://doi.org/10.1016/j.jphotochem.2021.113693

    Article  CAS  Google Scholar 

  17. Tezcan, F. A., Kaiser, J. T., Mustafi, D., Walton, M. Y., Howard, J. B., & Rees, D. C. (2005). Nitrogenase complexes: Multiple docking sites for a nucleotide switch protein. Science, 309, 1377–1380. https://doi.org/10.1126/science.1115653

    Article  CAS  PubMed  Google Scholar 

  18. Patil, D. Y., Patil, A. A., Khadke, N. B., & Borhade, A. V. (2019). Highly selective and sensitive colorimetric probe for Al3+ and Fe3+ metal ions based on 2-aminoquinolin-3-yl phenyl hydrazone Schiff base. Inorganica Chimica Acta, 492, 167–176. https://doi.org/10.1016/j.ica.2019.04.006

    Article  CAS  Google Scholar 

  19. Maity, P., Naskar, B., Goswami, S., Prodhan, C., Chaudhuri, T., Chaudhuri, K., & Mukhopadhyay, C. (2018). selective and sensitive benzo-imidazo-pyrrolo[3,4-c] pyridines based chemosensor for iron, DFT calculation and its biological application. ACS Omega, 3, 18646–18655. https://doi.org/10.1016/j.molstruc.2021.130280

    Article  CAS  Google Scholar 

  20. Chae, J. B., Jang, H. J., & Kim, C. (2017). Sequential detection of Fe3+/2+ and pyrophosphate by a colorimetric chemosensor in a near-perfect aqueous solution. Photochemical & Photobiological Sciences, 16, 1812–1820. https://doi.org/10.1039/c7pp00354d

    Article  CAS  Google Scholar 

  21. Liang, Z. Q., Wang, C. X., & Yang, J. X. (2007). A highly selective colorimetric chemosensor for detecting the respective amounts of iron(ii) and iron(iii) ions in water. New Journal of Chemistry, 31, 906–910.

    Article  CAS  Google Scholar 

  22. Chung, P. K., Liu, S. R., Wang, H. F., & Wu, S. P. (2013). A pyrene-based highly selective turn-on fluorescent chemosensor for iron (iii) ions and its application in living cell imaging. Journal of Fluorescence, 23, 1139–1145. https://doi.org/10.1007/s10895-013-1242-6. Epub 2013 Jul 4.

    Article  CAS  PubMed  Google Scholar 

  23. Ducheyen, P., Grainger, D.W., Healy, K., Hutmacher, D.W., & Kirkpatrick, C.J. (2017). Elsevier

  24. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Rodriguez-Torres, M. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanbiotechnology, 16, 71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  Google Scholar 

  25. Arayne, M.S., Sultana, N., & Qureshi, F. (2007) In vitro hypoglycemic activity of methanolic extract of some indigenous plants. Pakistan Journal of Pharmaceutical Sciences, 20, 8–15. https://pesquisa.bvsalud.org/portal/resource/pt/emr-97393

  26. Partap, J. K., & Baek, K. H. (2014). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 219. https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  27. Joseph, R. R., & Venkatraman, S. S. (2017). Drug delivery to the eye: What benefits do nanocarriers offer? Nanomedicine, 12, 683–702. https://doi.org/10.2217/nnm-2016-0379

    Article  CAS  PubMed  Google Scholar 

  28. Alavinia, S., & Ghorbani-Vaghei, R. (2020). Synthesis of 3-oxadiazole-substituted imidazo[1{,}2-a]pyridines by nickel immobilized on multifunctional amphiphilic porous polysulfonamide–melamine. New Journal of Chemistry, 44(30), 13062–13073.

    Article  CAS  Google Scholar 

  29. Alavinia, S., Ghorbani-Vaghei, R., Rakhtshah, J., Yousefi Seyf, J., & Ali Arabian, I. (2020). Copper iodide nanoparticles-decorated porous polysulfonamide gel: As effective catalyst for decarboxylative synthesis of N-Arylsulfonamides. Applied Organometallic Chemistry, 34(2020), e5449.

    CAS  Google Scholar 

  30. Yang, X., Wang, Y., Liu, R., Zhang, Y., Tang, J., Yang, E. B., Zhang, D., Zhao, Y., & Ye, Y. (2019). A novel ICT-based two photon and NIR fluorescent probe for labile Fe2+ detection and cell imaging in living cells. Sensors and Actuators, B: Chemical, 288, 217–224. https://doi.org/10.1016/j.snb.2019.02.123

    Article  CAS  Google Scholar 

  31. Ghosh, K., & Rathi, S. (2014). A novel probe for selective colorimetric sensing of Fe(ii) and Fe(iii) and specific fluorometric sensing of Fe(iii): DFT calculation and logic gate application. RSC Advances, 4, 48516–48521. https://doi.org/10.1039/C4RA07731H

    Article  CAS  Google Scholar 

  32. Hu, X. T., Yin, Z., Luo, X. P., Shen, C. H., & Zeng, M. H. (2021). Acid and alkalinity stable pillared-layer and fluorescent zinc(II) metal–organic framework for selective sensing of Fe3+ ions in aqueous solution. Inorganic Chemistry Communications, 129, 108664. https://doi.org/10.1016/j.inoche.2021.108664

    Article  CAS  Google Scholar 

  33. Chen, D. M., Zhang, N. N., Liu, C. S., & Du, M. (2017). Template-directed synthesis of a luminescent Tb-MOF material for highly selective Fe3+ and Al3+ ion detection and VOC vapor sensing. Journal of Materials Chemistry C, 5, 2311–2317. https://doi.org/10.1039/C6TC05349A

    Article  CAS  Google Scholar 

  34. Atchudan, R., Edison, T. N. J. I., Chakradhar, D., Perumal, S., Shim, J. J., & Lee, Y. R. (2017). Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors and Actuators, B: Chemical, 246, 497–509. https://doi.org/10.1016/j.snb.2017.02.119

    Article  CAS  Google Scholar 

  35. Sadak, O., Sundramoorthy, A. K., & Gunasekaran, S. (2017). Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosensors & Bioelectronics, 89, 430–436. https://doi.org/10.1016/j.bios.2016.04.073

    Article  CAS  Google Scholar 

  36. Yang, H., Qi, Y., Guo, L., Fan, N., Shao, C., Zhang, W., & Yang, L. (2022). A multifunctional luminescent chemosensor of Yb III-MOF for the detection of Nitrobenzene, Fe3+ and Cr2O72–. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633, 127851. https://doi.org/10.1016/j.colsurfa.2021.127851

    Article  CAS  Google Scholar 

  37. Yang, Y. S., Yang, C., Zhang, Y. P., Guo, H. C., Cao, J. Q., & Xue, J. J. (2021). Novel coumarin-based pyrazoline derivatives organogels for Fe3+ detection and application in cell imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126798. https://doi.org/10.1016/j.colsurfa.2021.126798

    Article  CAS  Google Scholar 

  38. Ghimire, P. P., & Jaroniec, M. (2021). Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities. Journal of Colloid and Interface Science, 584, 838–865. https://doi.org/10.1016/j.jcis.2020.10.014

    Article  CAS  PubMed  Google Scholar 

  39. Tago, A., Yanase, M., Yamauchi, N., Nakashima, K., Nagao, D., & Kobayashi, Y. (2021). Preparation and properties of silica-coated metallic nickel particles. Journal of Colloid and Interface Science, 629, 127524. https://doi.org/10.1016/j.colsurfa.2021.127524

    Article  CAS  Google Scholar 

  40. Beryl, J. R., & Xavier, J. R. (2021). Influence of silane functionalized nanoclay on the barrier, mechanical and hydrophobic properties by clay nanocomposite films in an aggressive chloride medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127625. https://doi.org/10.1016/j.colsurfa.2021.127625

    Article  CAS  Google Scholar 

  41. Gupta, N., Singhal, D., Singh, A. K., Singh, N., & Singh, U. P. (2017). A highly selective chromogenic sensor for Mn2+, turn-off fluorometric for Hg2+ ion, and turn-on fluorogenic sensor for F ion with the practical application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 38–46. https://doi.org/10.1016/j.saa.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  42. Sun, Y., Kunc, F., Balhara, V., Coleman, B., Kodra, O., Raza, M., Chen, M., Brinkmann, A., Lopinski, G. P., & Johnston, L. J. (2019). Quantification of amine functional groups on silica nanoparticles: A multi-method approach. Nanoscale Advances, 1, 1598. https://doi.org/10.1039/C9NA00016J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lashgari, N., Badiei, A., Ziarani, G. M., & Faridbod, F. (2017). Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water. Analytical and Bioanalytical Chemistry, 409, 3175–3185. https://doi.org/10.1007/s00216-017-0258-1

    Article  CAS  PubMed  Google Scholar 

  44. Ekta, & Utreja, D. (2021). Fluorescence based comparative sensing behavior of the nano-composites of SiO2 and TiO2 towards toxic Hg2+ ions. Nanomaterials, 11, 3082. https://doi.org/10.3390/nano11113082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodrigues, J. M. M., Farinha, A. S. F., Lin, Z., Cavaleiro, J. A. S., Tome, A. C., & Tome, J. P. C. (2021). Phthalocyanine-functionalized magnetic silica nanoparticles as anion chemosensors. Sensors, 21, 1632. https://doi.org/10.3390/s21051632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma, R. K., Sharma, S., Gulati, S., & Pandey, A. (2013). Fabrication of a novel nano-composite carbon paste sensor based on silica-nanospheres functionalized with isatin thiosemicarbazone for potentiometric monitoring of Cu2+ ions in real samples. Analytical Methods, 5, 1414. https://doi.org/10.1039/C3AY26319C

    Article  CAS  Google Scholar 

  47. Kumar, G. G. V., Kesavan, M. P., Sankarganesh, M., Sakthipandi, K., Rajesh, J., & Sivaraman, G. (2018). A Schiff base receptor as a fluorescence turn-on sensor for Ni2+ ions in living cells and logic gate application. New Journal of Chemistry, 42, 2865–2873. https://doi.org/10.1039/C7NJ03784H

    Article  Google Scholar 

Download references

Acknowledgements

Ekta acknowledges the Rajiv Gandhi National Fellowship from the University Grants Commission in New Delhi. We also like to thank Dr. Kamaljit Singh (Guru Nanak Dev University, Amritsar (Punjab)) for his essential assistance.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Utreja.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 101 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekta, Utreja, D. Sulfonamide functionalized silica nano-composite: characterization and fluorescence “turn-on” detection of Fe3+ ions in aqueous samples. Photochem Photobiol Sci 22, 1919–1931 (2023). https://doi.org/10.1007/s43630-023-00421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00421-5

Keywords

Navigation