Skip to main content

Advertisement

Log in

Fluorescence quenching in thylakoid membranes induced by single-walled carbon nanotubes

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The distinct photochemical and electrochemical properties of single-walled carbon nanotubes (SWCNTs) boosted the research interest in nanomaterial utilization in different in vivo and in vitro photosynthetic biohybrid setups. Aiming to unravel the yet not fully understood energetic interactions between the nanotubes and photosynthetic pigment–protein assemblies in an aqueous milieu, we studied SWCNT effects on the photochemical reactions of isolated thylakoid membranes (TMs), Photosystem II (PSII)-enriched membrane fragments and light-harvesting complexes (LHCII). The SWCNTs induced quenching of the steady-state chlorophyll fluorescence in the TM-biohybrid systems with a corresponding shortening of the average fluorescence lifetimes. The effect was not related to changes in the integrity and macroorganization of the photosynthetic membranes. Moreover, we found no evidence for direct excitation energy exchange between the SWCNTs and pigment–protein complexes, since neither the steady-state nor time-resolved fluorescence of LHCII-biohybrid systems differed from the corresponding controls. The attenuation of the fluorescence signal in the TM-biohybrid systems indicates possible leakage of photosynthetic electrons toward the nanotubes that most probably occurs at the level of the PSII acceptor site. Although it is too early to speculate on the nature of the involved electron donors and intermediate states, the observed energetic interaction could be exploited to increase the photoelectron capture efficiency of natural biohybrid systems for solar energy conversion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed are included in this published article and Supplementary Information.

References

  1. Sokol, K. P., Robinson, W. E., Oliveira, A. R., Warnan, J., Nowaczyk, M. M., Ruff, A., Pereira, I. A. C., & Reisner, E. (2018). Photoreduction of CO2 with a formate dehydrogenase driven by photosystem II using a semi-artificial Z-scheme architecture. Journal of the American Chemical Society, 140, 16418–16422. https://doi.org/10.1021/jacs.8b10247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suresh, L., Vaghasiya, J. V., Kannan, U. P., Zhang, Y., Ravi, S. K., Paul, N., Jones, M. R., & Tan, S. C. (2021). 1200% enhancement of solar energy conversion by engineering three dimensional arrays of flexible biophotoelectrochemical cells in a fixed footprint encompassed by Johnson solid shaped optical well. Nano Energy, 79, 105424. https://doi.org/10.1016/j.nanoen.2020.105424

    Article  CAS  Google Scholar 

  3. Lambreva, M. D., Lavecchia, T., Tyystjärvi, E., Antal, T. K., Orlanducci, S., Margonelli, A., & Rea, G. (2015). Potential of carbon nanotubes in algal biotechnology. Photosynthesis Research, 125, 451–471. https://doi.org/10.1007/s11120-015-0168-z

    Article  CAS  PubMed  Google Scholar 

  4. Pankratov, D., Pankratova, G., & Gorton, L. (2020). Thylakoid membrane–based photobioelectrochemical systems: Achievements, limitations, and perspectives. Current Opinion in Electrochemistry, 19, 49–54. https://doi.org/10.1016/j.coelec.2019.09.005

    Article  CAS  Google Scholar 

  5. Mouhib, M., Antonucci, A., Reggente, M., Amirjani, A., Gillen, A. J., & Boghossian, A. A. (2019). Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Research, 12, 2184–2199. https://doi.org/10.1007/s12274-019-2438-0

    Article  Google Scholar 

  6. Christwardana, M., Septevani, A. A., & Yoshi, L. A. (2021). Sustainable electricity generation from photo-bioelectrochemical cell based on carbon nanotubes and chlorophyll anode. Solar Energy, 227, 217–223. https://doi.org/10.1016/j.solener.2021.09.002

    Article  CAS  Google Scholar 

  7. Antonucci, A., Reggente, M., Roullier, C., Gillen, A. J., Schuergers, N., Zubkovs, V., Lambert, B. P., Mouhib, M., Carata, E., Dini, L., & Boghossian, A. A. (2022). Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics. Nature Nanotechnology. https://doi.org/10.1038/s41565-022-01198-x

    Article  PubMed  Google Scholar 

  8. Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., Brew, J. A., & Strano, M. S. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13, 400–408. https://doi.org/10.1038/nmat3890

    Article  CAS  PubMed  Google Scholar 

  9. Wiwatowski, K., Duzyńska, A., Świniarski, M., Szalkowski, M., Zdrojek, M., Judek, J., Mackowski, S., & Kaminska, I. (2016). Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes. Journal of Luminescence, 170, 855–859. https://doi.org/10.1016/j.jlumin.2015.09.034

    Article  CAS  Google Scholar 

  10. Dewi, H. A., Sun, G., Zheng, L., & Lim, S. (2015). Interaction and charge transfer between isolated thylakoids and multi-walled carbon nanotubes. Physical Chemistry Chemical Physics: PCCP, 17, 3435–3440. https://doi.org/10.1039/C4CP04575K

    Article  CAS  PubMed  Google Scholar 

  11. Orlanducci, S., Fulgenzi, G., Margonelli, A., Rea, G., Antal, T. K., & Lambreva, M. D. (2020). Mapping single walled carbon nanotubes in photosynthetic algae by single-cell confocal raman microscopy. Materials (Basel)., 13, 1–14. https://doi.org/10.3390/ma13225121

    Article  CAS  Google Scholar 

  12. Calkins, J. O., Umasankar, Y., O’Neill, H., & Ramasamy, R. P. (2013). High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion. Energy & Environmental Science, 6, 1891–1900. https://doi.org/10.1039/c3ee40634b

    Article  CAS  Google Scholar 

  13. Pankratov, D., Pankratova, G., Dyachkova, T. P., Falkman, P., Åkerlund, H. E., Toscano, M. D., Chi, Q., & Gorton, L. (2017). Supercapacitive biosolar cell driven by direct electron transfer between photosynthetic membranes and CNT networks with enhanced performance. ACS Energy Letters, 2, 2635–2639. https://doi.org/10.1021/acsenergylett.7b00906

    Article  CAS  Google Scholar 

  14. Antal, T. K., Volgusheva, A. A., Kukarskikh, G. P., Lukashev, E. P., Bulychev, A. A., Margonelli, A., Orlanducci, S., Leo, G., Cerri, L., Tyystjärvi, E., & Lambreva, M. D. (2022). Single-walled carbon nanotubes protect photosynthetic reactions in Chlamydomonas reinhardtii against photoinhibition. Plant Physiology and Biochemistry, 192, 298–307. https://doi.org/10.1016/J.PLAPHY.2022.10.009

    Article  CAS  PubMed  Google Scholar 

  15. Serag, M. F., Kaji, N., Habuchi, S., Bianco, A., & Baba, Y. (2013). Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 3, 4856. https://doi.org/10.1039/c2ra22766e

    Article  CAS  Google Scholar 

  16. Wong, M. H., Misra, R. P., Giraldo, J. P., Kwak, S. Y., Son, Y., Landry, M. P., Swan, J. W., Blankschtein, D., & Strano, M. S. (2016). Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Letters, 16, 1161–1172. https://doi.org/10.1021/acs.nanolett.5b04467

    Article  CAS  PubMed  Google Scholar 

  17. Lambrev, P. H., Várkonyi, Z., Krumova, S., Kovács, L., Miloslavina, Y., Holzwarth, A. R., & Garab, G. (2007). Importance of trimer–trimer interactions for the native state of the plant light-harvesting complex II. Biochimica et Biophysica Acta, 1767, 847–853. https://doi.org/10.1016/J.BBABIO.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  18. Dunahay, T. G., Staehelin, L. A., Seibert, M., Ogilvie, P. D., & Berg, S. P. (1984). Structural, biochemical and biophysical characterization of four oxygen-evolving photosystem II preparations from spinach. Biochimica et Biophysica Acta, 764, 179–193. https://doi.org/10.1016/0005-2728(84)90027-6

    Article  CAS  Google Scholar 

  19. Caffarri, S., Croce, R., Breton, J., & Bassi, R. (2001). The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. Journal of Biological Chemistry, 276, 35924–35933. https://doi.org/10.1074/JBC.M105199200

    Article  CAS  PubMed  Google Scholar 

  20. Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975, 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  21. Akhtar, P., Lingvay, M., Kiss, T., Deák, R., Bóta, A., Ughy, B., & Lambrev, P. H. (2016). Excitation energy transfer between light-harvesting complex II and Photosystem I in reconstituted membranes. Biochimica et Biophysica Acta, 1857, 462–472. https://doi.org/10.1016/j.bbabio.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  22. Sipka, G., Magyar, M., Mezzetti, A., Akhtar, P., Zhu, Q., Xiao, Y., Han, G., Santabarbara, S., Shen, J.-R., Lambrev, P. H., & Garab, G. (2021). Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. The Plant Cell, 33, 1286–1302. https://doi.org/10.1093/plcell/koab008

    Article  PubMed  PubMed Central  Google Scholar 

  23. Papageorgiou, G. C. G. (2004). Chlorophyll a fluorescence: a signature of photosynthesis (1st ed.). Dordrecht: Springer.

    Book  Google Scholar 

  24. Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., & Weisman, R. B. (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 298, 2361–2366. https://doi.org/10.1126/science.1078727

    Article  CAS  PubMed  Google Scholar 

  25. Ruban, A. V., & Horton, P. (1992). Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I. Spectroscopic analysis of isolated light-harvesting complexes. Biochimica et Biophysica Acta, 1102, 30–38. https://doi.org/10.1016/0005-2728(92)90061-6

    Article  CAS  Google Scholar 

  26. Garab, G., & van Amerongen, H. (2009). Linear dichroism and circular dichroism in photosynthesis research. Photosynthesis Research, 101, 135–146. https://doi.org/10.1007/S11120-009-9424-4/FIGURES/3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lambrev, P. H., & Akhtar, P. (2019). Macroorganisation and flexibility of thylakoid membranes. The Biochemical Journal, 476, 2981–3018. https://doi.org/10.1042/BCJ20190080

    Article  CAS  PubMed  Google Scholar 

  28. Barber, J. (1980). Membrane surface charges and potentials in relation to photosynthesis. Biochimica et Biophysica Acta, 594, 253–308. https://doi.org/10.1016/0304-4173(80)90003-8

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Z., Yang, R., & You, M. (2010). Single-walled carbon nanotube as an effective quencher. Analytical and Bioanalytical Chemistry, 396, 73–83. https://doi.org/10.1007/s00216-009-3192-z

    Article  CAS  PubMed  Google Scholar 

  30. Campbell, J. F., Tessmer, I., Thorp, H. H., Erie, D. A., Hill, C., & Carolina, N. (2008). Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. JACS, 130, 10648–10655. https://doi.org/10.1021/ja801720c

    Article  CAS  Google Scholar 

  31. Szalkowski, M., Surrente, A., Wiwatowski, K., Yang, Z., Zhang, N., Olmos, J. D. J., Kargul, J., Plochocka, P., & Maćkowski, S. (2022). Spectral dependence of the energy transfer from photosynthetic complexes to monolayer graphene. International Journal of Molecular Sciences, 23, 3493. https://doi.org/10.3390/ijms23073493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Papageorgiou, G. C., & Alygizaki-Zorba, K. (1994). The alginate polyanion fFacilitates thermal deactivation of photosynthetic oxygen evolution. Journal of Plant Physiology, 144, 675–679. https://doi.org/10.1016/S0176-1617(11)80659-0

    Article  CAS  Google Scholar 

  33. Jursinic, P., & Stemler, A. (1988). Multiple anion effects on photosystem II in chloroplast membranes. Photosynthesis Research, 15, 41–56. https://doi.org/10.1007/BF00054987

    Article  CAS  PubMed  Google Scholar 

  34. Singh-Rawal, P., Zsiros, O., Bharti, S., Garab, G., & Jajoo, A. (2011). Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants. Journal of Bioenergetics and Biomembranes, 43, 195–202. https://doi.org/10.1007/S10863-011-9346-7

    Article  CAS  PubMed  Google Scholar 

  35. Dorogi, M., Bálint, Z., Mikó, C., Vileno, B., Milas, M., Hernádi, K., László, F., Váró, G., & Nagy, L. (2006). Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. The Journal of Physical Chemistry B, 110, 21473–21479. https://doi.org/10.1021/jp060828t

    Article  CAS  PubMed  Google Scholar 

  36. Unwin, P. R., Güell, A. G., & Zhang, G. (2016). Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Accounts of Chemical Research, 49, 2041–2048. https://doi.org/10.1021/acs.accounts.6b00301

    Article  CAS  PubMed  Google Scholar 

  37. Kaniber, S. M., Brandstetter, M., Simmel, F. C., Carmeli, I., & Holleitner, A. W. (2010). On-chip functionalization of carbon nanotubes with photosystem I. Journal of the American Chemical Society, 132, 2872–2873. https://doi.org/10.1021/ja910790x

    Article  CAS  PubMed  Google Scholar 

  38. Husu, I., Rodio, G., Touloupakis, E., Lambreva, M. D., Buonasera, K., Litescu, S. C., Giardi, M. T., & Rea, G. (2013). Insights into photo-electrochemical sensing of herbicides driven by Chlamydomonas reinhardtii cells. Sensors Actuators B Chem., 185, 321–330. https://doi.org/10.1016/j.snb.2013.05.013

    Article  CAS  Google Scholar 

  39. Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Y. Mohammad, U. Pathre, & P. Mohanty (Eds.), Probing photosynthesis: Mechanism, regulation and adaptation (pp. 445–483). London p: Taylor and Francis.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. András Kincses for carrying out electrokinetic mobility measurements on SWCNTs.

Funding

This work was partially funded by the Short Term Mobility program of CNR supporting the visit of M.D.L. to the Laboratory of Photosynthetic Membranes, BRC, Hungary. M.D.L. acknowledges financial support from the Bilateral Scientific and Technological Cooperation CNR-RFBR Italy/Russia within the Joint Research Project Lambreva/Rubin, 2015–2017. This work was supported by grants from the National Research Development and Innovation Fund Hungary (FK-139067 to P.A. and PD-138498 to G.S.) and the Eötvös Loránd Research Network (SA-76/2021 to P.A.).

Author information

Authors and Affiliations

Authors

Contributions

MDL, PA and PHL performed the experiments and analyzed data; PA was responsible for TM, BBY and LHCII sample preparation; MDL and AM performed SWCNT functionalization; G.S. performed electrochromic shift spectroscopy; MDL and PHL conceived the study, conceptualized data and drafted the original manuscript. All the authors read, edited, and approved the final manuscript.

Corresponding authors

Correspondence to Maya D. Lambreva or Petar H. Lambrev.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1771 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambreva, M.D., Akhtar, P., Sipka, G. et al. Fluorescence quenching in thylakoid membranes induced by single-walled carbon nanotubes. Photochem Photobiol Sci 22, 1625–1635 (2023). https://doi.org/10.1007/s43630-023-00403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00403-7

Keywords

Navigation