Skip to main content
Log in

Fast quinazolinone synthesis by combining enzymatic catalysis and photocatalysis

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A fast and highly efficient method for the synthesis of functionalized quinazolinones by combining enzymatic catalysis and photocatalysis is reported. The α-Chymotrypsin catalyzed the cyclization of aldehyde and 2-aminobenzamide, which was subsequently followed by White LED-induced oxidation of 2-phenyl-2, 3-dihydroquinazolin-4(1H)-one to obtain quinazolinone. The reaction process was highly efficient with a reaction yield of 99% in just 2 h, and a wide range of quinazolinones could be synthesized. Furthermore, the plausible mechanism was investigated by control experiments and DFT calculations. This protocol provides an alternative synthetic route for the preparation of quinazolinone derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The data that supports the findings of this study are available.

References

  1. Heidary, M., Khoobi, M., Ghasemi, S., Habibi, Z., & Faramarzi, M. A. (2014). Synthesis of quinazolinones from alcohols via laccase-mediated tandem oxidation. Advanced Synthesis & Catalysis, 356(8), 1789–1794.

    Article  CAS  Google Scholar 

  2. Ghosh, T., Mandal, I., Basak, S. J., & Dash, J. (2021). Potassium tert-butoxide promoted synthesis of dihydroquinazolinones. The Journal of Organic Chemistry, 86(21), 14695–14704.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Z., Zeng, L. Y., Li, C., Yang, F., Qiu, F., Liu, S., & Xi, B. (2018). “On-water” synthesis of quinazolinones and dihydroquinazolinones starting from o-bromobenzonitrile. Molecules, 23(9), 2325.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Auti, P. S., George, G., & Paul, A. T. (2020). Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Advances, 10(68), 41353–41392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel, H. M., Noolvi, M. N., Shirkhedkar, A. A., Kulkarni, A. D., Pardeshi, C. V., & Surana, S. J. (2016). Anti-convulsant potential of quinazolinones. RSC Advances, 6(50), 44435–44455.

    Article  CAS  Google Scholar 

  6. Farooq, S., Mazhar, A., & Ullah, N. (2020). One-pot multicomponent synthesis of novel 3, 4-dihydro-3-methyl-2 (1H)-quinazolinone derivatives and their biological evaluation as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. Arabian Journal of Chemistry, 13(12), 9145–9165.

    Article  CAS  Google Scholar 

  7. Ghosh, P., Ganguly, B., & Das, S. (2020). C-H functionalization of quinazolinones by transition metal catalysis. Organic & Biomolecular Chemistry, 18(24), 4497–4518.

    Article  CAS  Google Scholar 

  8. Li, Z., Dong, J., Chen, X., Li, Q., Zhou, Y., & Yin, S. F. (2015). Metal- and oxidant-free synthesis of quinazolinones from β-ketoesters with o-aminobenzamides via phosphorous acid-catalyzed cyclocondensation and selective C–C bond cleavage. The Journal of Organic Chemistry, 80(19), 9392–9400.

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh, S. K., & Nagarajan, R. (2016). Deep eutectic solvent mediated synthesis of quinazolinones and dihydroquinazolinones: Synthesis of natural products and drugs. RSC Advances, 6(33), 27378–27387.

    Article  CAS  Google Scholar 

  10. Sun, J., Song, Y., & Ryu, J. S. (2021). Gold (I)-catalyzed tandem synthesis of polycyclic dihydroquinazolinones. Catalysts, 11(12), 1436.

    Article  CAS  Google Scholar 

  11. Vemula, S. R., Kumar, D., & Cook, G. R. (2018). Bismuth-catalyzed synthesis of 2-substituted quinazolinones. Tetrahedron Letters, 59(42), 3801–3805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rohokale, R. S., & Kshirsagar, U. A. (2016). Advanced synthetic strategies for constructing quinazolinone scaffolds. Synthesis, 48(09), 1253–1268.

    Article  CAS  Google Scholar 

  13. Li, Q., Huang, Y., Chen, T., Zhou, Y., Xu, Q., Yin, S. F., & Han, L. B. (2014). Copper-catalyzed aerobic oxidative amination of sp3C–H bonds: Efficient synthesis of 2-hetarylquinazolin-4 (3 H)-ones. Organic Letters, 16(14), 3672–3675.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, W., Liu, P., & Li, F. (2016). Quinazolinones from o-aminobenzonitriles by one-pot sequential selective hydration/condensation/acceptorless dehydrogenation catalyzed by an iridium complex. ChemCatChem, 8(8), 1523–1530.

    Article  CAS  Google Scholar 

  15. Chandra Pariyar, G., Mitra, B., Mukherjee, S., & Ghosh, P. (2020). Ascorbic acid as an efficient organocatalyst for the synthesis of 2-substituted-2, 3-dihydroquinazolin-4 (1H)-one and 2-substituted quinazolin-4 (3H)-one in water. ChemistrySelect, 5(1), 104–108.

    Article  CAS  Google Scholar 

  16. Zhou, J., & Fang, J. (2011). One-pot synthesis of quinazolinones via iridium-catalyzed hydrogen transfers. The Journal of Organic Chemistry, 76(19), 7730–7736.

    Article  CAS  PubMed  Google Scholar 

  17. Sahoo, S., & Pal, S. (2021). Copper-catalyzed one-pot synthesis of quinazolinones from 2-nitrobenzaldehydes with aldehydes: application toward the synthesis of natural products. The Journal of Organic Chemistry, 86(24), 18067–18080.

    Article  CAS  PubMed  Google Scholar 

  18. Nagasawa, Y., Matsusaki, Y., Nobuta, T., Tada, N., Miura, T., & Itoh, A. (2015). Aerobic photooxidative synthesis of 2-aryl-4-quinazolinones from aromatic aldehydes and aminobenzamide using catalytic amounts of molecular iodine. RSC Advances, 5(78), 63952–63954.

    Article  CAS  Google Scholar 

  19. Reddy, B. S., Venkateswarlu, A., Madan, C., & Vinu, A. (2011). Cellulose-SO3H: An efficient and biodegradable solid acid for the synthesis of quinazolin-4 (1H)-ones. Tetrahedron Letters, 52(16), 1891–1894.

    Article  Google Scholar 

  20. Matcha, S. L., Karasala, B. K., Botsa, S. M., & Vidavalur, S. (2021). Brønsted acid catalyzed synthesis of 2-aryl-quinazolinones via cyclization of 2-aminobenzamide with benzonitriles in PEG. Journal of Heterocyclic Chemistry, 58(10), 1955–1961.

    Article  CAS  Google Scholar 

  21. Umadevi, N., Kumar, G., Reddy, N. C. G., & Reddy, B. V. S. (2021). Recent advances in C–H activation and functionalization of quinazolinones/quinazolines. Current Organic Chemistry, 25(5), 601–634.

    Article  CAS  Google Scholar 

  22. Bahekar, S. P., Dahake, N. D., Sarode, P. B., & Chandak, H. S. (2015). Efficient access to 2,3-dihydroquinazolin-4 (1H)-ones by environmentally benign l-proline nitrate as recyclable catalyst. Synlett, 26(18), 2575–2577.

    Article  CAS  Google Scholar 

  23. Mohammed, S., Vishwakarma, R. A., & Bharate, S. B. (2015). Iodine catalyzed oxidative synthesis of quinazolin-4(3H)-ones and pyrazolo[4,3-d]pyrimidin-7(6H)-ones via amination of sp3 C–H bond. The Journal of Organic Chemistry, 80(13), 6915–6921.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, D., Wang, T., & Li, J. X. (2014). Metal-free oxidative synthesis of quinazolinones via dual amination of sp3 C–H bonds. Chemical Communications, 50(49), 6471–6474.

    Article  CAS  PubMed  Google Scholar 

  25. Qiao, J., Jiang, H., Liu, X., Xu, C., Sun, Z., & Chu, W. (2019). Ruthenium-catalyzed synthesis of quinazolinones through hydrogen transfer and cyclization. European Journal of Organic Chemistry, 2019(13), 2428–2434.

    Article  CAS  Google Scholar 

  26. Gholap, A. V., Maity, S., Schulzke, C., Maiti, D., & Kapdi, A. R. (2017). Synthesis of Cu-catalysed quinazolinones using a Csp3–H functionalisation/cyclisation strategy. Organic & Biomolecular Chemistry, 15(34), 7140–7146.

    Article  CAS  Google Scholar 

  27. Bering, L., Craven, E. J., Sowerby Thomas, S. A., Shepherd, S. A., & Micklefield, J. (2022). Merging enzymes with chemocatalysis for amide bond synthesis. Nature Communications, 13(1), 1–10.

    Article  Google Scholar 

  28. Sheldon, R. A., Brady, D., & Bode, M. L. (2020). The Hitchhiker’s guide to biocatalysis: Recent advances in the use of enzymes in organic synthesis. Chemical Science, 11(10), 2587–2605.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ghorashi, N., Shokri, Z., Moradi, R., Abdelrasoul, A., & Rostami, A. (2020). Aerobic oxidative synthesis of quinazolinones and benzothiazoles in the presence of laccase/DDQ as a bioinspired cooperative catalytic system under mild conditions. RSC Advances, 10(24), 14254–14261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, S. G., Xie, Z. B., Liu, L. S., Liang, M., & Le, Z. G. (2017). Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by α-chymotrypsin. Chinese Chemical Letters, 28(1), 101–104.

    Article  CAS  Google Scholar 

  31. Sun, B., Shi, R., Zhang, K., Tang, X., Shi, X., Xu, J., et al. (2021). Photoinduced homolytic decarboxylative acylation/cyclization of unactivated alkenes with α-keto acid under external oxidant and photocatalyst free conditions: Access to quinazolinone derivatives. Chemical Communications, 57(49), 6050–6053.

    Article  CAS  PubMed  Google Scholar 

  32. Gui, Q. W., Teng, F., Yang, H., Xun, C., Huang, W. J., Lu, Z. Q., et al. (2022). Visible-light photosynthesis of CHF2/CClF2/CBrF2-substituted ring-fused quinazolinones in dimethyl carbonate. Chemistry—An Asian Journal, 17(1), e202101139.

    Article  CAS  PubMed  Google Scholar 

  33. Chalotra, N., Shah, I. H., Raheem, S., Rizvi, M. A., & Shah, B. A. (2021). Visible-light-promoted oxidative annulation of naphthols and alkynes: Synthesis of functionalized naphthofurans. The Journal of Organic Chemistry, 86(23), 16770–16784.

    Article  CAS  PubMed  Google Scholar 

  34. Xie, Z., Lan, J., Zhu, H., Lei, G., Jiang, G., & Le, Z. (2021). Visible light induced tandem reactions: An efficient one pot strategy for constructing quinazolinones using in-situ formed aldehydes under photocatalyst-free and room-temperature conditions. Chinese Chemical Letters, 32(4), 1427–1431.

    Article  CAS  Google Scholar 

  35. Wang, R., Liu, S., Li, L., Song, A., Yu, S., Zhuo, S., & Xing, L. B. (2021). Metal-free catalyst for the visible-light-induced photocatalytic synthesis of quinazolinones. Molecular Catalysis, 509, 111668.

    Article  CAS  Google Scholar 

  36. Wei, L., Wei, Y., Zhang, J., & Xu, L. (2021). Visible-light-mediated organoboron-catalysed metal-free dehydrogenation of N-heterocycles using molecular oxygen. Green Chemistry, 23(12), 4446–4450.

    Article  CAS  Google Scholar 

  37. Yang, J., Xie, Z., Chen, Z., Jin, L., Li, Q., & Le, Z. (2021). Catalyst-free synthesis of quinazolinones by oxidative cyclization under visible light in the absence of additives. Journal of Heterocyclic Chemistry, 58(7), 1496–1501.

    Article  CAS  Google Scholar 

  38. Zhang, W., Meng, C., Liu, Y., Tang, Y., & Li, F. (2018). Auto-tandem catalysis with ruthenium: From o-aminobenzamides and allylic alcohols to quinazolinones via redox isomerization/acceptorless dehydrogenation. Advanced Synthesis & Catalysis, 360(19), 3751–3759.

    Article  CAS  Google Scholar 

  39. Zhong, J. J., To, W. P., Liu, Y., Lu, W., & Che, C. M. (2019). Efficient acceptorless photo-dehydrogenation of alcohols and N-heterocycles with binuclear platinum(II) diphosphite complexes. Chemical Science, 10(18), 4883–4889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Özgen, F. F., Runda, M. E., & Schmidt, S. (2021). Photo-biocatalytic cascades: Combining chemical and enzymatic transformations fueled by light. ChemBioChem, 22(5), 790–806.

    Article  PubMed  Google Scholar 

  41. Dong, C. L., Ding, X., Huang, L. Q., He, Y. H., & Guan, Z. (2020). Merging visible light photocatalysis and l-/d-proline catalysis: Direct asymmetric oxidative dearomatization of 2-arylindoles to access C2-quaternary indolin-3-ones. Organic Letters, 22(3), 1076–1080.

    Article  CAS  PubMed  Google Scholar 

  42. Ding, X., Dong, C. L., Guan, Z., & He, Y. H. (2019). Concurrent asymmetric reactions combining photocatalysis and enzyme catalysis: Direct enantioselective synthesis of 2,2-disubstituted indol-3-ones from 2-arylindoles. Angewandte Chemie, 131(1), 124–130.

    Article  Google Scholar 

  43. Yang, Z. J., Gong, Q. T., Yu, Y., Lu, W. F., Wu, Z. N., Wang, N., & Yu, X. Q. (2021). Fast and high-efficiency synthesis of 2-substituted benzothiazoles via combining enzyme catalysis and photoredox catalysis in one-pot. Bioorganic Chemistry, 107, 104607.

    Article  CAS  PubMed  Google Scholar 

  44. Guo, X., Okamoto, Y., Schreier, M. R., Ward, T. R., & Wenger, O. S. (2018). Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network. Chemical Science, 9(22), 5052–5056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Litman, Z. C., Wang, Y., Zhao, H., & Hartwig, J. F. (2018). Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature, 560(7718), 355–359.

    Article  CAS  PubMed  Google Scholar 

  46. Ríos-Lombardía, N., Vidal, C., Liardo, E., Morís, F., García-Álvarez, J., & González-Sabín, J. (2016). From a sequential to a concurrent reaction in aqueous medium: Ruthenium-catalyzed allylic alcohol isomerization and asymmetric bioreduction. Angewandte Chemie, 128(30), 8833–8837.

    Article  Google Scholar 

  47. Le, Z. G., Liang, M., Chen, Z. S., Zhang, S. H., & Xie, Z. B. (2017). Ionic liquid as an efficient medium for the synthesis of quinoline derivatives via α-chymotrypsin-catalyzed Friedländer condensation. Molecules, 22(5), 762.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xue, J. W., Guo, J. T., He, Y. H., & Guan, Z. (2017). Solvent-controlled enzyme-catalyzed Friedel–Crafts reactions of indoles and isatins by using α-chymotrypsin. Asian Journal of Organic Chemistry, 6(3), 297–304.

    Article  CAS  Google Scholar 

  49. Xiang, Y., Song, J., Zhang, Y., Yang, D. C., Guan, Z., & He, Y. H. (2016). Enzyme-catalyzed asymmetric domino thia-Michael/aldol condensation using pepsin. The Journal of Organic Chemistry, 81(14), 6042–6048.

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh, I., Shaikh, R. S., & König, B. (2017). Photoredoxkatalyse durch sensibilisierten Elektronentransfer. Angewandte Chemie, 129(29), 8664–8669.

    Article  Google Scholar 

  51. Han, Y., Luo, X., Lai, R., Li, Y., Liang, G., & Wu, K. (2019). Visible-light-driven sensitization of naphthalene triplets using quantum-confined CsPbBr3 nanocrystals. The Journal of Physical Chemistry Letters, 10(7), 1457–1463.

    Article  CAS  PubMed  Google Scholar 

  52. Cao, L., Huo, H., Zeng, H., Yu, Y., Lu, D., & Gong, Y. (2018). One-pot synthesis of quinazolin-4(3H)-ones through anodic oxidation and the related mechanistic studies. Advanced Synthesis & Catalysis, 360(24), 4764–4773.

    Article  CAS  Google Scholar 

  53. Zheng, C., Wang, Y., Xu, Y., Chen, Z., Chen, G., & Liang, S. H. (2018). Ru-Photoredox-catalyzed decarboxylative oxygenation of aliphatic carboxylic acids through N-(acyloxy)phthalimide. Organic Letters, 20(16), 4824–4827.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of Jiangxi Province (No. 20212ACB203001) and the Science and Technology Project of Jiangxi (No. 20192BBH80012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanggao Le or Zongbo Xie.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2581 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Le, Z., Fan, Q. et al. Fast quinazolinone synthesis by combining enzymatic catalysis and photocatalysis. Photochem Photobiol Sci 22, 525–534 (2023). https://doi.org/10.1007/s43630-022-00332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00332-x

Keywords

Navigation