Skip to main content

Advertisement

Log in

Ce2(MoO4)3 synthesized with oleylamine and oleic acid as additives for photocatalysis: effect of preparation method

  • Communications
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ce2(MoO4)3 was prepared using dielectric barrier discharge (DBD) plasma method, co-precipitation method and hydrothermal method, respectively, with water/ethanol (W/O) as solvent, oleylamine (OAm) and oleic acid (OAc) as additives. Preparation method showed significant influence on the morphological and structural properties, as well as photocatalytic performance. Ce2(MoO4)3 synthesized with DBD plasma (MO-P) was mainly flowerlike nanosheets, which were beneficial to promoting electron transfer and providing more space for catalytic activity. Also, MO-P samples exhibited more oxygen vacancies, which were conducive to the photocatalytic performance. What’s more, MO-P showed lower PL intensity and narrow energy gap, which implied a slow photoelectron–hole pair recombination rate and an increased electron transfer rate. The degradation rate of methyl orange (50 mg/L) could achieve 98% within 12 min with 0.5 g/L MO-P. Hydroxyl radicals (·OH) and superoxide radicals (·O2) played a major effect. Plasma synthesis method exhibited potential application prospect in photocatalysts preparation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Wei, K., Faraj, Y., Yao, G., Xie, R., & Lai, B. (2021). Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chemical Engineering Journal, 414, 128783.

    Article  CAS  Google Scholar 

  2. Ahmad, N., Anae, J., Khan, M. Z., Sabir, S., Yang, X. J., Thakur, V. K., Campo, P., & Coulon, F. (2021). Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater. Journal of Environmental Management, 295, 113362.

    Article  CAS  Google Scholar 

  3. Fauzi, A. A., Jalil, A. A., Hassan, N. S., Aziz, F. F. A., Azami, M. S., Hussain, I., Saravanan, R., & Vo, D. V. N. (2022). A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere, 286, 131651.

    Article  CAS  Google Scholar 

  4. Chen, Q., Wang, H., Luan, Q., Duan, R., Cao, X., Fang, Y., Ma, D., Guan, R., & Hu, X. (2020). Synergetic effects of defects and acid sites of 2D-ZnO photocatalysts on the photocatalytic performance. Journal of Hazardous Materials, 385, 121527.

    Article  CAS  Google Scholar 

  5. Ghorai, K., Panda, A., Bhattacharjee, M., Mandal, D., Hossain, A., Bera, P., Seikh, M. M., & Gayen, A. (2021). Facile synthesis of CuCr2O4/CeO2 nanocomposite: A new Fenton like catalyst with domestic LED light assisted improved photocatalytic activity for the degradation of RhB, MB and MO dyes. Applied Surface Science, 536, 147604.

    Article  CAS  Google Scholar 

  6. Rafieezadeh, M., & Kianfar, A. H. (2022). Fabrication of heterojunction ternary Fe3O4/TiO2/CoMoO4 as a magnetic photocatalyst for organic dyes degradation under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 423, 113596.

    Article  CAS  Google Scholar 

  7. Raja, A., Son, N., & Kang, M. (2022). Reduced graphene oxide supported on Gd2MoO6-ZnO nanorod photocatalysts used for the effective reduction of hexavalent chromium. Separation and Purification Technology, 281, 119872.

    Article  CAS  Google Scholar 

  8. Ebadi, M., Asri, M., & Beshkar, F. (2021). Novel Mo/Bi2MoO6/Bi3ClO4 heterojunction photocatalyst for ultra-deep desulfurization of thiophene under simulated sunlight irradiation. Advanced Powder Technology, 32, 2160–2170.

    Article  CAS  Google Scholar 

  9. Tao, X., Zheng, K., & Huang, L. (2021). Plasma induced liquid-phase synthesis of Ce/Mo metal oxides as photocatalysts. Chemical Physics Letter, 780, 138903.

    Article  CAS  Google Scholar 

  10. Aghajani, Z., & Hosseinpour-Mashkani, S. M. (2020). Design novel Ce(MoO4)2@TiO2 n-n heterostructures: Enhancement photodegradation of toxic dyes. Journal of Materials Science: Materials in Electronic, 31, 6593–6606.

    CAS  Google Scholar 

  11. Yang, Z., Qi, W., Su, R., & He, Z. (2017). 3D flower-like micro/nano Ce-Mo composite oxides as effective bifunctional catalysts for one-pot conversion of fructose to 2,5-diformylfuran. ACS Sustainable Chemistry & Engineering, 5, 4179–4187.

    Article  CAS  Google Scholar 

  12. Sobhani-Nasab, A., Maddahfar, M., & Hosseinpour-Mashkani, S. M. (2016). Ce(MoO4)2 nanostructures: Synthesis, characterization, and its photocatalyst application through the ultrasonic method. Journal of Molecular Liquids, 216, 1–5.

    Article  CAS  Google Scholar 

  13. Wang, C., Wang, Y., Chen, M., Hu, J., Yang, Z., Zhang, H., Wang, J., & Liu, S. (2019). Hydrogen production from ethanol steam reforming over Co-Ce/sepiolite catalysts prepared by a surfactant assisted coprecipitation method. International Journal of Hydrogen Energy, 44, 26888–26904.

    Article  CAS  Google Scholar 

  14. Sun, S., Mao, D., & Yu, J. (2015). Enhanced CO oxidation activity of CuO/CeO2 catalyst prepared by surfactant-assisted impregnation method. Journal of Rare Earths, 33, 1268–1274.

    Article  CAS  Google Scholar 

  15. Jiang, C., Wang, Z., Lin, H., Wang, Y., Luo, C., Li, B., Qi, R., Huang, R., Tang, X., & Peng, H. (2017). Self-assembly behaviour of bismuth oxide nanoparticles assisted by oleylamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 403–408.

    Article  CAS  Google Scholar 

  16. Kurtan, U., Erdemi, H., Baykal, A., & Güngüneş, H. (2016). Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceramics International, 42, 13350–13358.

    Article  CAS  Google Scholar 

  17. Shi, Y., Yin, S., Ma, Y., Lu, D., Chen, Y., Tang, Y., & Lu, T. (2014). Oleylamine-functionalized palladium nanoparticles with enhanced electrocatalytic activity for the oxygen reduction reaction. Journal of Power Sources, 246, 356–360.

    Article  CAS  Google Scholar 

  18. Lv, C., Sun, L., Li, Q., Wang, X., Zhang, T., Cao, Y., Yang, Z., & Qi, L. (2020). Oleic acid-mediated synthesis of small-sized and monodisperse NiSe2 nanowires as counter electrode catalysts for triiodide reduction. Electrochimica Acta, 355, 136818.

    Article  CAS  Google Scholar 

  19. Gao, X., Tan, Z., Hidajat, K., & Kawi, S. (2017). Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catalysis Today, 281, 250–258.

    Article  CAS  Google Scholar 

  20. Maryam, D., Majid, M. F., Samaneh, S., & Marzieh, F. (2020). Microemulsion-mediated preparation of Ce2(MoO4)3 nanoparticles for photocatalytic degradation of crystal violet in aqueous solution. Environmental Science and Pollution Research, 27, 12047–12054.

    Article  Google Scholar 

  21. Geng, Y., Chen, X., Yang, S., Liu, F., & Shan, W. (2017). Promotional effects of Ti on a CeO2-MoO3 catalyst for the selective catalytic reduction of NOx with NH3. ACS Applied Materials & Interfaces, 9, 16951–16958.

    Article  CAS  Google Scholar 

  22. Li, S., Hu, S., Jiang, W., Liu, Y., Zhou, Y., Liu, J., & Wang, Z. (2018). Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. Journal of Colloid and Interface Science, 530, 171–178.

    Article  CAS  Google Scholar 

  23. Tang, T., Jin, X., & Tao, X. (2022). Low-crystalline Ce-based bimetallic MOFs synthesized via DBD plasma for excellent visible photocatalytic performance. Journal of Alloys and Compounds, 895, 162452.

    Article  CAS  Google Scholar 

  24. Lawrence, N. J., Brewer, J. R., Wang, L., Wu, T. S., Wells-Kingsbury, J., Ihrig, M. M., Wang, G., Soo, Y. L., Mei, W. N., & Cheung, C. L. (2011). Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Letters, 11, 2666–2671.

    Article  CAS  Google Scholar 

  25. Xi, Q., Liua, J., Wu, Z., Bi, H., Li, Z., Zhu, K., Zhuang, J., Chen, J., Lu, S., Huang, Y., & Qian, G. (2019). In-situ fabrication of MoO3 nanobelts decorated with MoO2 nanoparticles and their enhanced photocatalytic performance. Applied Surface Science, 480, 427–437.

    Article  CAS  Google Scholar 

  26. Dong, M. Y., Lin, Q., Sun, H. M., Chen, D., Zhang, T., Wu, Q. Z., & Li, S. P. (2011). Synthesis of cerium molybdate hierarchical architectures and their novel photocatalytic and adsorption performances. Crystal Growth & Design, 11, 5002–5009.

    Article  CAS  Google Scholar 

  27. Tao, X., Yang, C., Huang, L., & Shang, S. (2019). Novel plasma assisted preparation of ZnCuFeCr layered double hydroxides with improved photocatalytic performance of methyl orange degradation. Applied Surface Science, 507, 145053.

    Article  Google Scholar 

  28. Tao, X., Cong, W., Huang, L., & Xu, D. (2019). CeO2 photocatalysts derived from Ce-MOFs synthesized with DBD plasma method for methyl orange degradation. Journal of Alloys and Compounds, 805, 1060–1070.

    Article  CAS  Google Scholar 

  29. Tao, X., Han, Y., Sun, C., Huang, L., & Xu, D. (2019). Plasma modification of NiAlCe-LDH as improved photocatalyst for organic dye wastewater degradation. Applied Clay Science, 172, 75–79.

    Article  CAS  Google Scholar 

  30. Rafaie, H. A., Nazam, N. A. A. M., Ramli, N. I. T., Mohamed, R., & Kasim, M. F. (2021). Synthesis, characterization and photocatalytic activities of Al-doped ZnO for degradation of methyl orange dye under UV light irradiation. Journal of the Australian Ceramic Society, 57, 479–488.

    Article  CAS  Google Scholar 

  31. Pirsaheb, M., Hossaini, H., Nasseri, S., Azizi, N., Shahmoradi, B., & Khosravi, T. (2020). Optimization of photocatalytic degradation of methyl orange using immobilized scoria-Ni/TiO2 nanoparticles. Journal of Nanostructure in Chemistry, 10, 143–159.

    Article  CAS  Google Scholar 

  32. Li, N., He, Y., Yi, Z., Gao, L., Zhai, F., & Chattopadhyay, K. (2020). Multiple-metal-doped Fe3O4@Fe2O3 nanoparticles with enhanced photocatalytic performance for methyl orange degradation under UV/solar light irradiation. Ceramics International, 46, 19038–19045.

    Article  CAS  Google Scholar 

  33. Verma, R., Samdarshi, S. K., Bojja, S., Paul, S., & Choudhury, B. (2015). A novel thermophotocatalyst of mixed-phase cerium oxide (CeO2/Ce2O3) homocomposite nanostructure: Role of interface and oxygen vacancies. Solar Energy Materials and Solar Cells, 141, 414–422.

    Article  CAS  Google Scholar 

  34. Xu, Y., Li, H., Sun, B., Qiao, P., Ren, L., Tian, G., Jiang, B., Pan, K., & Zhou, W. (2020). Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chemical Engineering Journal, 379, 122295.

    Article  CAS  Google Scholar 

  35. Dai, Z., Qin, F., Zhao, H., Ding, J., Liu, Y., & Chen, R. (2016). Crystal defects engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catalysis, 13, 3180–3192.

    Article  Google Scholar 

  36. Zhang, X., Wang, C., & Gao, Y. (2020). Cerium (III)-doped MoS2 nanosheets with expanded interlayer spacing and peroxidase-mimicking properties for colorimetric determination of hydrogen peroxide. Microchimica Acta, 187, 111.

    Article  CAS  Google Scholar 

  37. Yang, B., Ma, Z., Li, Q., Liu, X., Liu, Z., Yang, W., Guo, X., & Jia, X. (2020). Regulation of surface plasmon resonance and oxygen vacancy defects in chlorine doped Bi-BiO2-x for imidacloprid photocatalytic degradation. New Journal of Chemistry, 44, 1090.

    Article  CAS  Google Scholar 

  38. Liu, H., Feng, Y., Shao, J., Chen, Y., Wang, Z. L., Li, H., Chen, X., & Bian, Z. (2020). Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy, 70, 104499.

    Article  CAS  Google Scholar 

  39. Jia, Y., Li, S., Ma, H., Gao, J., Zhu, G., Zhang, F., Park, J. Y., Cha, S., Bae, J. S., & Liu, C. (2020). Oxygen vacancy rich Bi2O4-Bi4O7-BiO2-x composites for UV–vis-NIR activated high efficient photocatalytic degradation of bisphenol A. Journal of Hazardous Materials, 382, 121121.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province [ZR2020MB034].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xumei Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Kong, X., Chang, K. et al. Ce2(MoO4)3 synthesized with oleylamine and oleic acid as additives for photocatalysis: effect of preparation method. Photochem Photobiol Sci 22, 241–250 (2023). https://doi.org/10.1007/s43630-022-00308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00308-x

Keywords

Navigation