Skip to main content
Log in

Early detection of stripe rust infection in wheat using light-induced fluorescence spectroscopy

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the current study, the application of fluorescence spectroscopy along with the advanced statistical technique and confocal microscopy was investigated for the early detection of stripe rust infection in wheat grown under field conditions. The indigenously developed Fluorosensor fitted with LED, emitting monochromatic light was used that covered comparatively larger leaf area for recording fluorescence data thus presenting more reliable current status of the leaf. The examined leaf samples covered the entire range of stripe rust disease infection from no visible symptoms to the complete disease prevalence. The molecular changes were also assessed in the leaves as the disease progresses. The emission spectra mainly produce two fluorescence emission classes, namely the blue-green fluorescence (400–600 nm range) and chlorophyll fluorescence (650–800 nm range). The chlorophyll fluorescence region showed lower chlorophyll bands both at 685 and 735 nm in the asymptomatic (early diseased) and symptomatic (diseased) leaf samples than the healthy ones as a result of partial deactivation of PSII reaction centers. The 735 nm chlorophyll fluorescence band was either slight or completely absent in the leaf samples with lower to higher disease incidence and thus differentiate between the healthy and the infected leaf samples. The Hydroxycinnamic acids (caffeic and sinapic acids) showed decreasing trend, whereas the ferulic acid increased with the rise in disease infection. Peak broadening/shifting has been observed in case of ferulic acid and carotenes/carotenoids, with the increase in the disease intensity. While using the LEDs (365 nm), the peak broadening and the decline in the chlorophyll fluorescence bands could be used for the early prediction of stripe rust disease in wheat crop. The PLSR statistical techniques discriminated well between the healthy and the diseased samples, thus showed promise in early disease detection. Confocal microscopy confirmed the early prevalence of stripe rust disease infection in a susceptible variety at a stage when the disease is not detectable visually. It is inferred that fluorescence emission spectroscopy along with the chemometrics aided in the effective and timely diagnosis of plant diseases and the detected signatures provide the basis for remote sensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UN, World population prospects: The 2012 revision. Retrieved from https://www.un.org/en/development/desa/publications/world-population-prospects-the-2012-revision.html. Accessed 3 Sep 2021

  2. Fróna, D., Szenderák, J., & Harangi-Rákos, M. (2019). The challenge of feeding the world. Sustainability, 11, 5816.

    Google Scholar 

  3. Shikur, Z. H. (2020). Agricultural policies, agricultural production and rural households’ welfare in Ethiopia. Journal of Economics Structure, 9, 1–21.

    Google Scholar 

  4. Nikolić, B. R., Pavlović, D. M., Đurović, S., Waisi, H., Marisavljević, D., & Anđelković, A. (2014). Chlorophyll as a measure of plant health: Agroecological aspects. Pestic Phytomedicine/Pestic I Fitomedicina, 29, 21–34. https://doi.org/10.2298/pif.v29i1.5121

    Article  Google Scholar 

  5. S. Patterson, Understanding the role of magnesium in plants—How do plants use magnesium. Retrieved from https://www.gardeningknowhow.com/garden-how-to/soil-fertilizers/fixing-magnesium-deficiency.htm. Accessed 25 Nov 2021

  6. Pina-Oviedo, S., Ortiz-Hidalgo, C., & Ayala, A. G. (2017). Human Colors—The rainbow garden of pathology: What gives normal and pathologic tissues their color? Archives of Pathology and Laboratory Medicine, 141, 445–462.

    Google Scholar 

  7. Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 19, 164.

    Google Scholar 

  8. Gröber, U., Schmidt, J., & Kisters, K. (2015). Magnesium in prevention and therapy. Nutrients, 7, 8199.

    Google Scholar 

  9. Yahia, E. M., Carrillo-López, A., Barrera, G. M., Suzán-Azpiri, H., & Bolaños, M. Q. (2019). Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 47–72). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813278-4.00003-8

    Book  Google Scholar 

  10. NatGeoSoc, Photosynthesis|National Geographic Society. Retrieved from https://www.nationalgeographic.org/encyclopedia/photosynthesis/. Accessed 15 Dec 2021.

  11. Khorobrykh, S., Havurinne, V., Mattila, H., & Tyystjärvi, E. (2020). Oxygen and ROS in photosynthesis. Plants, 9, 91. https://doi.org/10.3390/plants9010091

    Article  CAS  Google Scholar 

  12. Soll, J., & Schleiff, E. (2004). Protein import into chloroplasts. Nature Reviews Molecular Cell Biology, 5, 198–208.

    CAS  Google Scholar 

  13. Nature Education, contents of essentials of cell biology|learn science at scitable. Retrieved from https://www.nature.com/scitable/ebooks/essentials-of-cell-biology-14749010/122996720/. Accessed 16 Dec 2021

  14. Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., & Li, T. (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10, 1–9.

    Google Scholar 

  15. Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9, 352. https://doi.org/10.3390/agronomy9070352

    Article  Google Scholar 

  16. Figueroa, M., Hammond-Kosack, K. E., & Solomon, P. S. (2018). A review of wheat diseases—A field perspective. Molecular Plant Pathology, 19, 1523–1536.

    Google Scholar 

  17. Chen, Y. E., Cui, J. M., Su, Y. Q., Yuan, S., Yuan, M., & Zhang, H. Y. (2015). Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. Frontiers in Plant Science, 6, 779.

    Google Scholar 

  18. Ali, S., Leconte, M., Rahman, H., Saqib, M. S., Gladieux, P., Enjalbert, J., & de Vallavieille-Pope, C. (2014). A high virulence and pathotype diversity of Puccinia striiformis f.sp. tritici at its centre of diversity, the Himalayan region of Pakistan. European Journal of Plant Pathology, 140, 275–290.

    Google Scholar 

  19. Ali, S., Gladieux, P., Leconte, M., Gautier, A., Justesen, A. F., Hovmøller, M. S., Enjalbert, J., & de Vallavieille-Pope, C. (2014). Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathogology, 10, 1003903.

    Google Scholar 

  20. Chen, X., Moore, M., Milus, E. A., Long, D. L., Line, R. F., Marshall, D., & Jackson, L. (2002). Wheat stripe rust epidemics and races of Puccinia striiformis f sp tritici in the United States in 2000. Plant Disease, 86, 39–46.

    Google Scholar 

  21. Ali, S., Rodriguez-Algaba, J., Thach, T., Sørensen, C. K., Hansen, J. G., Lassen, P., Nazari, K., Hodson, D. P., Justesen, A. F., & Hovmøller, M. S. (2017). Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Frontiers in Plant Science, 8, 1–13. https://doi.org/10.3389/fpls.2017.01057

    Article  CAS  Google Scholar 

  22. Atta, B. M., Saleem, M., Ali, H., Bilal, M., & Fayyaz, M. (2020). Application of fluorescence spectroscopy in wheat crop: Early disease detection and associated molecular changes. Journal of Fluorescence, 30, 801–810.

    CAS  Google Scholar 

  23. Line, R. F. (2002). Stripe rust of wheat and barley in North America: A retrospective historical review. Annual review of Phytopathology, 40, 75–118.

    CAS  Google Scholar 

  24. Mehmood, S., Sajid, M., Zhao, J., Huang, L., & Kang, Z. (2020). Alternate hosts of Puccinia striiformis f. sp. tritici and their role. Pathogens, 9, 434.

    CAS  Google Scholar 

  25. Saleem, M., Atta, B. M., Ali, Z., & Bilal, M. (2020). Laser-induced fluorescence spectroscopy for early disease detection in grapefruit plants. Photochemical and Photobiological Sciences, 19, 713–721.

    CAS  Google Scholar 

  26. Buschmann, C. (2007). Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research, 92, 261–271.

    CAS  Google Scholar 

  27. Gouveia-neto, A. S., Silva-jr, E. A., Cunha, P. C., Oliveira-filho, R., Silva, L. M. H., Costa, E. B., Câmara, T. J. R., & Willadino, L. G. (2011). Biofuel production-recent developments and prospects (pp. 1–22). InTech.

    Google Scholar 

  28. Bürling, K., Hunsche, M., & Noga, G. (2011). Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. Journal of Plant Physiology, 168, 1641–1648.

    Google Scholar 

  29. Lenk, S., Gádoros, P., Kocsányi, L., & Barócsi, A. (2016). Teaching laser-induced fluorescence of plant leaves. European Journal of Physics, 37, 064003.

    Google Scholar 

  30. Ranulfi, A. C., Cardinali, M. C. B., Kubota, T. M. K., Freitas-Astúa, J., Ferreira, E. J., Bellete, B. S., da Silva, M. F. G. F., Villas Boas, P. R., Magalhães, A. B., & Milori, D. M. B. P. (2016). Laser-induced fluorescence spectroscopy applied to early diagnosis of citrus Huanglongbing. Biosystem Engineering, 144, 133–144.

    Google Scholar 

  31. He, R., Li, H., Qiao, X., & Jiang, J. (2018). Using wavelet analysis of hyperspectral remote-sensing data to estimate canopy chlorophyll content of winter wheat under stripe rust stress. International Journal of Remote Sensing, 39, 4059–4076.

    Google Scholar 

  32. Robert, C., Bancal, M. O., Ney, B., & Lannou, C. (2005). Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. New Phytologist, 165, 227–241.

    Google Scholar 

  33. Kang, Z., Tang, C., Zhao, J., Cheng, Y., Liu, J., Guo, J., Wang, X., & Chen, X. (2017). Stripe rust (pp. 155–282). Dordrecht: Springer. https://doi.org/10.1007/978-94-024-1111-9_3

    Book  Google Scholar 

  34. Khanfri, S., Boulif, M., & Lahlali, R. (2018). Yellow rust (Puccinia striiformis): A serious threat to wheat production worldwide. Notation Science Biology, 10, 410–423. https://doi.org/10.15835/nsb10310287

    Article  CAS  Google Scholar 

  35. Carmona, M., Sautua, F., Pérez-Hérnandez, O., & Reis, E. M. (2020). Role of fungicide applications on the integrated management of wheat stripe rust. Frontiers in Plant Science, 11, 733.

    Google Scholar 

  36. WSU, Stripe Rust|Wheat and Small Grains|Washington State University. Retrieved form https://smallgrains.wsu.edu/disease-resources/foliar-fungal-diseases/stripe-rust/. Accessed 7 Feb 2022

  37. Atta, B. M., Saleem, M., Ali, H., Arshad, H. M. I., & Ahmed, M. (2018). Chlorophyll as a biomarker for early disease diagnosis. Laser Physics, 28, 065607.

    Google Scholar 

  38. Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1–13.

    Google Scholar 

  39. Ali, M. M., Bachik, N. A., Atirah Muhadi, N., Tuan Yusof, T. N., & Gomes, C. (2019). Non-destructive techniques of detecting plant diseases: A review. Physiology Molecular Plant PatholOGY, 108, 101426.

    CAS  Google Scholar 

  40. Kumar, P., Akhtar, J., Kandan, A., Kumar, S., Batra, R., & Dubey, S. C. (2016). Current trends in plant disease diagnostics and management practices, fungal biology (pp. 265–298). Springer. https://doi.org/10.1007/978-3-319-27312-9_12

    Book  Google Scholar 

  41. Cerovic, Z. G., Samson, G., Morales, F., Tremblay, N., & Moya, I. (1999). Ultraviolet-induced fluorescence for plant monitoring: Present state and prospects. Agronomie, 19, 543–578. https://doi.org/10.1051/agro:19990701

    Article  Google Scholar 

  42. Belasque, J., Jr., Gasparoto, M. C. G., & Marcassa, L. G. (1922). Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Applied Optics, 2008, 47.

    Google Scholar 

  43. Atta, B. M., Saleem, M., Ali, H., Ali, Z., & Zakria, M. (2019). Synchronous fluorescence spectroscopy for early diagnosis of citrus canker in citrus species. Laser Physics, 29, 085604.

    CAS  Google Scholar 

  44. Bharti, A. S., Sharma, S., Singh, A. K., Tiwari, M. K., & Uttam, K. N. (2021). Assessment of the elemental profile of leafy vegetables by synchrotron-radiation-induced energy dispersive X-ray fluorescence spectroscopy. Journal of Applied Spectroscopy, 88, 653–661.

    CAS  Google Scholar 

  45. Bharti, A. S., Sharma, S., Shukla, N., Tiwari, M. K., & Uttam, K. N. (2017). Elemental investigation of the leaf and seed of coriander plant by synchrotron radiation X-ray fluorescence spectroscopy. National Academy of Science Letters, 40, 373–377. https://doi.org/10.1007/s40009-017-0600-3

    Article  CAS  Google Scholar 

  46. Sharma, S., Sharma, S., Bharti, A. S., Tiwari, M. K., & Uttam, K. N. (2022). Non-destructive assessment of the nutrient profile of underutilized seeds using spectroscopic probes. Analytical Letters, 1, 1–17.

    Google Scholar 

  47. Sharma, S., Baran, C., Tripathi, A., Awasthi, A., Jaiswal, A., Uttam, R., Bharti, A. S., Singh, R., & Uttam, K. N. (2021). Phytochemical screening of the different cultivars of Ixora flowers by non-destructive, label-free, and rapid spectroscopic techniques. Analytical Letters, 54, 2276–2292.

    CAS  Google Scholar 

  48. Sharma, S., Uttam, R., Singh, P., & Uttam, K. N. (2018). Detection of vibrational spectroscopic biomarkers of the effect of gold nanoparticles on wheat seedlings using attenuated total reflectance fourier transform infrared spectroscopy. Analytical Letters, 51, 2271–2294.

    CAS  Google Scholar 

  49. Sharma, S., Uttam, R., & Uttam, K. N. (2020). Interaction of chlorophyll with titanium dioxide and iron oxide nanoparticles: A temperature dependent fluorescence quenching study. Analytical Letters, 53, 1851–1870.

    CAS  Google Scholar 

  50. Sharma, S., Uttam, R., Sarika Bharti, A., & Uttam, K. N. (2019). Interaction of zinc oxide and copper oxide nanoparticles with chlorophyll: A fluorescence quenching study. Analytical Letters, 52, 1539–1557.

    CAS  Google Scholar 

  51. Sharma, S., & Uttam, K. N. (2019). Non-invasive monitoring of biochemical response of wheat seedlings toward titanium dioxide nanoparticles treatment using attenuated total reflectance fourier transform infrared and laser induced fluorescence spectroscopy. Analytical Letters, 52, 1629–1652.

    CAS  Google Scholar 

  52. Sharma, S., & Uttam, K. N. (2017). Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy. Vibrational Spectroscopy, 92, 135–150.

    CAS  Google Scholar 

  53. Bharti, A. S., Sharma, S., Shukla, N., & Uttam, K. N. (2018). Steady state and time resolved laser-induced fluorescence of garlic plants treated with titanium dioxide nanoparticles. Spectroscopy Letters, 51, 45–54.

    Google Scholar 

  54. Tripathi, A., Baran, C., Jaiswal, A., Awasthi, A., Uttam, R., Sharma, S., Bharti, A. S., Singh, R., & Uttam, K. N. (2020). Investigating the carotenogenesis process in papaya fruits during maturity and ripening by non-destructive spectroscopic probes. Analytical Letters, 53, 2903–2920.

    CAS  Google Scholar 

  55. Sharma, S., Srivastava, S., Singh, R., & Uttam, K. N. (2017). Label-free and rapid spectroscopic evaluation of ripening of Syzygium cumini fruit. Spectroscopy Letters, 50, 115–123.

    CAS  Google Scholar 

  56. Sharma, S., Sarika Bharti, A., Singh, R., & Uttam, K. N. (2019). Non-destructive phenotyping of chili pepper ripening using spectroscopic probes: A potential approach for shelf-life measurement. Analytical Letters, 52, 1590–1613.

    CAS  Google Scholar 

  57. Kumar, G., Srivastava, P., Pandey, J. K., & Gopal, R. (2010). Effect of laser-irradiation on photosynthetic efficiency of safflower leaves. Journal of Phytology, 2, 13–16. http://www.journal-phytology.com.

  58. Rahman, M. A., Pandey, J. K., Sundaram, S., & Gopal, R. (2015). Response of growth, photosynthetic pigments, laser-induced pigment fluorescence, antioxidant enzymes and lipid peroxidation to ultraviolet-B radiation in two cyanobacteria. Indian Journal of Plant Physiology, 20, 240–248. https://doi.org/10.1007/s40502-015-0169-0

    Article  CAS  Google Scholar 

  59. Sankaran, S., & Ehsani, R. (2012). Detection of Huanglongbing disease in citrus using fluorescence spectroscopy. Transactions of the ASABE, 55, 313–320.

    Google Scholar 

  60. Tischler, Y. K., Thiessen, E., & Hartung, E. (2018). Early optical detection of infection with brown rust in winter wheat by chlorophyll fluorescence excitation spectra. Computers and Electronics in Agriculture, 146, 77–85.

    Google Scholar 

  61. Römer, C., Bürling, K., Hunsche, M., Rumpf, T., Noga, G., & Plümer, L. (2011). Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with Support Vector Machines. Computers and Electronics in Agriculture, 79, 180–188.

    Google Scholar 

  62. Burling, K., Hunsche, M., Noga, G., Pfeifer, L., & Damerow, L. (2011). UV-induced fluorescence spectra and lifetime determination for detection of leaf rust (Puccinia triticina) in susceptible and resistant wheat (Triticum aestivum) cultivars. Functional Plant Biology, 38, 337–345.

    Google Scholar 

  63. Bürling, K., Hunsche, M., & Noga, G. (2012). Presymptomatic detection of powdery mildew infection in winter wheat cultivars by laser-induced fluorescence. Applied Spectroscopy, 66, 1411–1419.

    Google Scholar 

  64. Bauriegel, E., & Herppich, W. (2014). Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases, with special reference to fusarium spec. infections on wheat. Agriculture, 4, 32–57. https://doi.org/10.3390/agriculture4010032

    Article  CAS  Google Scholar 

  65. Sharma, S., & Uttam, K. N. (2018). Early stage detection of stress due to copper on maize (Zea mays L.) by laser-induced fluorescence and infrared spectroscopy. Journal of Applied Spectroscopy, 85, 771–780.

    CAS  Google Scholar 

  66. Maurya, R., Prasad, S. M., & Gopal, R. (2008). LIF technique offers the potential for the detection of cadmium-induced alteration in photosynthetic activities of Zea mays L. Journal of Photochemistry Photobiology C Photochemistry Review, 9, 29–35. https://doi.org/10.1016/j.jphotochemrev.2008.03.001

    Article  CAS  Google Scholar 

  67. Sharma, S., Sarika Bharti, A., Tiwari, M. K., & Uttam, K. N. (2018). Effect of manganese stress on the mineral content of the leaves of wheat seedlings by use of X-ray fluorescence excited by synchrotron radiation. Spectroscopy Letters, 51, 302–310.

    CAS  Google Scholar 

  68. Sharma, S., & Uttam, K. N. (2018). Nondestructive and rapid probing of biochemical response of arsenic stress on the leaves of wheat seedlings using attenuated total reflectance fourier transform infrared spectroscopy. Analytical Letters, 52, 268–287.

    Google Scholar 

  69. Sharma, S., Singh, A. K., Tiwari, M. K., & Uttam, K. N. (2020). Prompt screening of the alterations in biochemical and mineral profile of wheat plants treated with chromium using attenuated total reflectance fourier transform infrared spectroscopy and X-ray fluorescence excited by synchrotron radiation. Analytical Letters, 53, 482–508.

    CAS  Google Scholar 

  70. Mishra, K. B., & Gopal, R. (2008). Detection of nickel-induced stress using laser-induced fluorescence signatures from leaves of wheat seedlings. International Journal of Remote Sensing, 29, 157–173. https://doi.org/10.1080/01431160701280975

    Article  Google Scholar 

  71. Pandey, J. K., & Gopal, R. (2011). Laser-induced chlorophyll fluorescence: A technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant. Journal of Fluorescence, 21, 785–791. https://doi.org/10.1007/s10895-010-0771-5

    Article  CAS  Google Scholar 

  72. Pandey, J. K., & Gopal, R. (2011). Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. plants. Spectroscopy, 26, 129–139. https://doi.org/10.3233/spe-2011-0530

    Article  CAS  Google Scholar 

  73. Mishra, K. B., & Gopal, R. (2005). Study of laser-indused fluorescence signatures from leaves of wheat seedlings growing under cadmium stress. General and Applied Plant Physiology, 31, 181–196.

    Google Scholar 

  74. Gopal, R., Mishra, K. B., Zeeshan, M., Prasad, S. M., & Joshi, M. M. (2002). Laser-induced chlorophyll fluorescence spectra of mung plants growing under nickel stress. Current Science, 83, 880–884. https://www.jstor.org/stable/24107093.

  75. Pandey, J. K., Srivastava, P., Yadav, R. S., & Gopal, R. (2012). Chlorophyll fluorescence spectra as an indicator of X-ray + EMS-induced phytotoxicity in safflower. Spectroscopy (New York), 27, 207–214. https://doi.org/10.1155/2012/951064

    Article  CAS  Google Scholar 

  76. Maurya, R., & Gopal, R. (2008). Laser-induced fluorescence ratios of Cajanus cajan L. under the stress of cadmium and its correlation with pigment content and pigment ratios. Applied Spectroscopy, 62, 433–438. https://doi.org/10.1366/000370208784046687

    Article  CAS  Google Scholar 

  77. E. H. & Woldeab, N. B. G. Stem rust collection, processing, and inoculation | BGRI Training. Retrieved from https://training.globalrust.org/manuals/race-analysis/chapter-3. Accessed 20 Aug 2021.

  78. Claxton, N. S., Fellers, T. J., & Davidson, M. W. (2006). Encyclopedia of medical devices and instrumentation (2nd ed., pp. 449–477). Wiley. https://doi.org/10.1002/0471732877.emd291

    Book  Google Scholar 

  79. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimantal Botany, 51, 659–668.

    CAS  Google Scholar 

  80. Müller, P., Li, X. P., & Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566.

    Google Scholar 

  81. Falco, W. F., Botero, E. R., Falcão, E. A., Santiago, E. F., Bagnato, V. S., & Caires, A. R. L. (2011). In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. Journal of Photochemistry and Photobiology, A Chemistry, 225, 65–71. https://doi.org/10.1016/j.jphotochem.2011.09.027

    Article  CAS  Google Scholar 

  82. Ullah, R., Khan, S., Bilal, M., Nurjis, F., & Saleem, M. (2016). Non-invasive assessment of mango ripening using fluorescence spectroscopy. Optik (Stuttg), 127, 5186–5189.

    CAS  Google Scholar 

  83. Strassburg, C. P., & Kalthoff, S. (2015). Coffee in health and disease prevention (pp. 535–543). Academic Press.

    Google Scholar 

  84. Zhang, Y., Cai, P., Cheng, G., & Zhang, Y. (2022). A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Natural Products Communications, 17, 1–14. https://doi.org/10.1177/1934578X211069721

    Article  Google Scholar 

  85. Lagorio, M. G., Cordon, G. B., & Iriel, A. (2015). Reviewing the relevance of fluorescence in biological systems. Photochemical and Photobiological Sciences, 14, 1538–1559. https://doi.org/10.1039/c5pp00122f

    Article  CAS  Google Scholar 

  86. Lang, M., Stober, F., & Lichtenthaler, H. K. (1991). Fluorescence emission spectra of plant leaves and plant constituents. Radiation and Environmental Biophysics, 30, 333–347.

    CAS  Google Scholar 

  87. El-Basyouni, S., & Towers, G. H. N. (1964). The phenolic acids in wheat: I. Changes during growth and development. Canadian Journal of Biochemistry, 42, 203–210.

    CAS  Google Scholar 

  88. Lichtenthaler, H. K., & Schweiger, J. (1998). Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. Journal of Plant Physiology, 152, 272–282.

    CAS  Google Scholar 

  89. Barron, C., Surget, A., & Rouau, X. (2007). Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. Journal of Cereal Science, 45, 88–96.

    CAS  Google Scholar 

  90. Li, L., Shewry, P. R., & Ward, J. L. (2008). Phenolic acids in wheat varieties in the healthgrain diversity screen. Journal of Agriculture and Food Chemistry, 56, 9732–9739.

    CAS  Google Scholar 

  91. Southerton, S. G., & Deverall, B. J. (1990). Changes in phenolic acid levels in wheat leaves expressing resistance to Puccinia recondita f. sp. tritici. Physiology Molecular Plant Pathology, 37, 437–450.

    CAS  Google Scholar 

  92. Meyer, S., Cartelat, A., Moya, I., & Cerovic, Z. G. (2003). UV-induced blue-green and far-red fluorescence along wheat leaves: A potential signature of leaf ageing. Journal of Experimental Botany, 54, 757–769.

    CAS  Google Scholar 

  93. Moore, J., Hao, Z., Zhou, K., Luther, M., Costa, J., & Yu, L. (2005). Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. Journal of Agriculture and Food Chemistry, 53, 6649–6657.

    CAS  Google Scholar 

  94. Žilić, S., Hadži-Tašković Šukalović, V., Dodig, D., Maksimović, V., Maksimović, M., & Basić, Z. (2011). Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. Journal of Cereal Science, 54, 417–424.

    Google Scholar 

  95. Tajner-Czopek, A., Gertchen, M., Rytel, E., Kita, A., Kucharska, A. Z., & Sokół-Łętowska, A. (2020). Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives. Antioxidants, 9, 1–21. https://doi.org/10.3390/antiox9050412

    Article  CAS  Google Scholar 

  96. Agunloye, O. M., Oboh, G., Ademiluyi, A. O., Ademosun, A. O., Akindahunsi, A. A., Oyagbemi, A. A., Omobowale, T. O., Ajibade, T. O., & Adedapo, A. A. (2019). Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomedicine and Pharmacotherapy, 109, 450–458.

    CAS  Google Scholar 

  97. Nićiforović, N., & Abramovič, H. (2014). Sinapic acid and its derivatives: Natural sources and bioactivity. Comprehensive Review Food Science Food Safety, 13, 34–51.

    Google Scholar 

  98. Burkhow, S. J., Stephens, N. M., Mei, Y., Dueñas, M. E., Freppon, D. J., Ding, G., Smith, S. C., Lee, Y. J., Nikolau, B. J., Whitham, S. A., & Smith, E. A. (2018). Characterizing virus-induced gene silencing at the cellular level with in situ multimodal imaging. Plant Methods, 14, 1–12.

    Google Scholar 

  99. Gitelson, A. A., Keydan, G. P., & Merzlyak, M. N. (2006). Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 33, L11402.

    Google Scholar 

  100. Stober, F., & Lichtenthaler, H. K. (1992). Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat. Journal of Plant Physiology, 140, 673–680.

    CAS  Google Scholar 

  101. Devadas, R., Lamb, D. W., Backhouse, D., & Simpfendorfer, S. (2015). Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precision Agriculture, 16, 477–491.

    Google Scholar 

  102. Ogawa, T., Inoue, Y., Kitajima, M., & Shibata, K. (1973). Action spectra for biosynthesis of chlorophylls a and b and β-carotene. Photochemistry and Photobiology, 18, 229–235.

    CAS  Google Scholar 

  103. Tambussi, E. A., Casadesus, J., Munné-Bosch, S., & Araus, J. L. (2002). Photoprotection in water-stressed plants of durum wheat (Triticum turgidum var. durum): Changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. Functional Plant Biology, 29, 35–44.

    CAS  Google Scholar 

  104. Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture, 75, 304–312.

    Google Scholar 

  105. Buschmann, C., Langsdorf, G., & Lichtenthaler, H. K. (2000). Imaging of the blue, green, and red fluorescence emission of plants: An overview. Photosynthetica, 38, 483–491.

    CAS  Google Scholar 

  106. Hardham, A. R. (2012). Plant fungal pathogens: Methods and protocols, methods in molecular biology (Vol. 835, pp. 295–309). Springer. https://doi.org/10.1007/978-1-61779-501-5_18

    Book  Google Scholar 

  107. Firdous, S. (2018). Optical fluorescence diagnostic of wheat leaf rust with laser scanning confocal microscopy. Advance Crop Science Technology, 06, 2–5. https://doi.org/10.4172/2329-8863.1000355

    Article  Google Scholar 

  108. Ha, X., Koopmann, B., & Von Tiedemann, A. (2016). Wheat blast and fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology, 106, 270–281.

    CAS  Google Scholar 

  109. Chen, D., Muhae-Ud-din, G., Liu, T., Chen, W., Liu, C., & Gao, L. (2021). Wheat varietal response to Tilletia controversa j. G. kühn using qrt-pcr and laser confocal microscopy. Genes (Basel), 12, 425.

    Google Scholar 

  110. Hutzler, P., Fischbach, R., Heller, W., Jungblut, T. P., Reuber, S., Schmitz, R., Veit, M., Weissenböck, G., & Schnitzler, J. P. (1998). Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. Journal of Experimental Botany, 49, 953–965.

    CAS  Google Scholar 

  111. Saadi, A., Lempereur, I., Sharonov, S., Autran, J. C., & Manfait, M. (1998). Spatial distribution of phenolic materials in durum wheat grain as probed by confocal fluorescence spectral imaging. Journal of Cereal Science, 28, 107–114.

    CAS  Google Scholar 

  112. Piot, O., Autran, J. C., & Manfait, M. (2000). Spatial distribution of protein and phenolic constituents in wheat grain as probed by confocal raman microspectroscopy. Journal of Cereal Science, 32, 57–71.

    CAS  Google Scholar 

  113. Moldenhauer, J., Pretorius, Z. A., Moerschbacher, B. M., Prins, R., & Van Der Westhuizen, A. J. (2008). Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat. Molecular Plant Pathology, 9, 137–145.

    CAS  Google Scholar 

  114. Moldenhauer, J., Moerschbacher, B. M., & Van Der Westhuizen, A. J. (2006). Histological investigation of stripe rust (Puccinia striiformis f.sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathology, 55, 469–474.

    Google Scholar 

  115. Cartwright, D. W., & Russell, G. E. (1981). Development of Puccinia striiformis in a susceptible winter wheat variety. Transactions of the British Mycological Society, 76, 197–204. https://doi.org/10.1016/S0007-1536(81)80139-8

    Article  Google Scholar 

  116. Jha, S. N., & Ruchi, G. (2010). Non-destructive prediction of quality of intact apple using near infrared spectroscopy. Journal of Food Science and Technology, 47, 207–213.

    CAS  Google Scholar 

  117. Ashourloo, D., Aghighi, H., Matkan, A. A., Mobasheri, M. R., & Rad, A. M. (2016). An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE Journal of Selected Topics Applied Earth Observation Remote Sensors, 9, 4344–4351.

    Google Scholar 

  118. Krishna, G., Sahoo, R. N., Pargal, S., Gupta, V. K., Sinha, P., Bhagat, S., Saharan, M. S., Singh, R., & Chattopadhyay, C. (2014). Assessing wheat yellow rust disease through hyperspectral remote sensing. International Archives Photogrammetry Remote Sensors Spatial Information Science, 8, 1413–1416. https://doi.org/10.5194/isprsarchives-XL-8-1413-2014

    Article  Google Scholar 

  119. Zhang, J. C., Liang Pu, R., Hua Wang, J., Jiang Huang, W., Yuan, L., & Hua Luo, J. (2012). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computer Electronics Agriculture, 85, 13–23.

    Google Scholar 

  120. Zhang, J. C., Yuan, L., Wang, J. H., Huang, W. J., Chen, L. P., & Zhang, D. Y. (2012). Spectroscopic leaf level detection of powdery mildew for winter wheat using continuous wavelet analysis. Journal of Integrative Agriculture, 11, 1474–1484.

    Google Scholar 

  121. Cao, X., Luo, Y., Zhou, Y., Fan, J., Xu, X., West, J. S., Duan, X., & Cheng, D. (2015). Detection of powdery mildew in two winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS ONE, 10, 1–14.

    Google Scholar 

  122. Yu, K., Anderegg, J., Mikaberidze, A., Karisto, P., Mascher, F., McDonald, B. A., Walter, A., & Hund, A. (2018). Hyperspectral canopy sensing of wheat septoria tritici blotch disease. Frontiers in Plant Science, 9, 1–17.

    Google Scholar 

  123. Yuan, L., Huang, Y., Loraamm, R. W., Nie, C., Wang, J., & Zhang, J. (2014). Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Food Crop Research, 156, 199–207. https://doi.org/10.1016/j.fcr.2013.11.012

    Article  Google Scholar 

  124. Leufen, G., Noga, G., Hunsche, M., Leufen, G., Noga, G., & Hunsche, M. (2014). Proximal sensing of plant-pathogen interactions in spring barley with three fluorescence techniques. Sensors, 14, 11135–11152.

    Google Scholar 

  125. Rolfe, S. A., & Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma, 247, 163–175.

    CAS  Google Scholar 

  126. Sikorska, E., Khmelinskii, I. V., Sikorski, M., Caponio, F., Bilancia, M. T., Pasqualone, A., & Gomes, T. (2008). Fluorescence spectroscopy in monitoring of extra virgin olive oil during storage. International Journal of Food Science and Technology, 43, 52–61.

    CAS  Google Scholar 

  127. Eitenmiller, R. R., Ye, L., & Landen, W. O. (2008). Vitamin analysis for the health and food sciences (2nd ed., pp. 119–191). CRC Press.

    Google Scholar 

  128. Sikorska, E., Khmelinskii, I., & Sikorski, M. (2012). Olive oil—Constituents, quality, health properties and bioconversions (pp. 63–88). InTech. https://doi.org/10.5772/30676

    Book  Google Scholar 

  129. Karoui, R., Cartaud, G., & Dufour, E. (2006). Front-face fluorescence spectroscopy as a rapid and nondestructive tool for differentiating various cereal products: A preliminary investigation. Journal of Agriculture and Food Chemistry, 54, 2027–2034.

    CAS  Google Scholar 

  130. Tena, N., García-gonzález, D. L., & Aparicio, R. (2009). Evaluation of virgin olive oil thermal deterioration by fluorescence spectroscopy. Journal of Agriculture and Food Chemistry, 57, 10505–10511.

    CAS  Google Scholar 

  131. Tříska, J., Vrchotová, N., Olejníčková, J., Jílek, R., & Sotolář, R. (2012). Separation and identification of highly fluorescent compounds derived from trans-resveratrol in the leaves of Vitis vinifera infected by Plasmopara viticola. Molecules, 17, 2773–2783.

    Google Scholar 

  132. Talamond, P., Verdeil, J. L., & Conéjéro, G. (2015). Secondary metabolite localization by autofluorescence in living plant cells. Molecules, 20, 5024–5037.

    CAS  Google Scholar 

  133. García-Plazaola, J. I., Fernández-Marín, B., Duke, S. O., Hernández, A., López-Arbeloa, F., & Becerril, J. M. (2015). Autofluorescence: Biological functions and technical applications (Supplementary Table 1). Plant Science, 236, 136–145.

    Google Scholar 

  134. Chappelle, E. W., McMurtrey, J. E., & Kim, M. S. (1991). Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis. Remote Sensing of Environment, 36, 213–218.

    Google Scholar 

  135. Morales, F., Cartelat, A., Álvarez-Fernández, A., Moya, I., & Cerovic, Z. G. (2005). Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. var. Scolymus) leaves: Identification of chlorogenic acid as one of the major fluorophores and age-mediated changes. Journal of Agriculture Food Chemistry, 53, 9668–9678.

    CAS  Google Scholar 

  136. Fulcher, R. G., O’Brien, T. P., & Lee, J. W. (1972). Studies on the aleurone layer I. Conventional and fluorescence microscopy of the cell wall with emphasis on phenol-carbohydrate complexes in wheat. Australian Journal of Biology Science, 25, 23–34.

    CAS  Google Scholar 

  137. Donaldson, L., & Williams, N. (2018). Imaging and spectroscopy of natural fluorophores in pine needles. Plants, 7, 1–16. https://doi.org/10.3390/plants7010010

    Article  CAS  Google Scholar 

  138. Oros, C. L., & Alves, F. (2018). Leaf wound induced ultraweak photon emission is suppressed under anoxic stress: Observations of Spathiphyllum under aerobic and anaerobic conditions using novel in vivo methodology. PLoS ONE, 13, e0198962.

    Google Scholar 

  139. Birtic, S., Ksas, B., Genty, B., Mueller, M. J., Triantaphylidès, C., & Havaux, M. (2011). Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. The Plant Journal, 67, 1103–1115.

    CAS  Google Scholar 

  140. Cerovic, Z. G., Langrand, E., Latouche, G., Morales, F., & Moya, I. (1998). Spectral characterization of NAD(P)H fluorescence in intact isolated chloroplasts and leaves: Effect of chlorophyll concentration on reabsorption of blue-green fluorescence. Photosynthesis Research, 56, 291–301.

    CAS  Google Scholar 

  141. Belefant-Miller, H., Miller, G. H., & Rutger, J. N. (2005). Nondestructive measurement of carotenoids in plant tissues by fluorescence quenching. Crop Science, 45, 1786–1789.

    CAS  Google Scholar 

  142. Stober, F., Lang, M., & Lichtenthaler, H. K. (1994). Blue, green, and red fluorescence emission signatures of green, etiolated, and white leaves. Remote Sensing of Environment, 47, 65–71.

    Google Scholar 

  143. Gottwald, T. R. (2010). Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology, 48, 119–139.

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Mrs. Fatima Batool and Mr. Muhammad Irfan, Scientific Assistants at Agri. and Biophotonics Division for their help in recording the spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babar Manzoor Atta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, B.M., Saleem, M., Bilal, M. et al. Early detection of stripe rust infection in wheat using light-induced fluorescence spectroscopy. Photochem Photobiol Sci 22, 115–134 (2023). https://doi.org/10.1007/s43630-022-00303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00303-2

Keywords

Navigation