Skip to main content
Log in

Acetal photocatalytic formation from ethanol in the presence of TiO2 rutile and anatase

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The decomposition of ethanol, one of the most important biomass platform molecules, was investigated under green conditions, ambient temperature, atmospheric pressure and air for the synthesis of acetal in the presence of TiO2 activated under UV-A radiation. The impact of ethanol concentration, of the nature of TiO2 (rutile, anatase or mixture), of the photo-deposition of Pt under air or argon were all factors under investigation. Whatever the conditions and the nature of catalyst used, acetaldehyde was initially formed before reacting with ethanol to form acetal, a promising fuel additive. However, the subsequent generation of acetal differs depending on the conditions and the nature of catalyst. In the absence of a noble metal, rutile TiO2 leads to an increase in acetal formation at equivalent acetaldehyde formation. This behavior is discussed considering the acidic and basic properties of rutile and anatase phases together with H+ generated under UV. In the presence of Pt, under air or Ar, the acetal formation begins at a lower concentration of acetaldehyde due to the in-situ photo-deposition of Pt. However, whereas acetal formation is similar for Pt/anatase and Pt/rutile phase under air, under Ar, less acetal is generated on Pt/rutile in agreement with the production of more H2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reddy, P. S., Sudarsanam, P., Mallesham, B., Raju, G., & Reddy, B. M. (2011). Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions. Journal of Industrial and Engineering Chemistry, 17, 377–381. https://doi.org/10.1016/j.jiec.2011.05.008

    Article  CAS  Google Scholar 

  2. Mohammad, S., Ardebili, S., & Khademalrasoul, A. (2018). An analysis of liquid-biofuel production potential from agricultural residues and animal fat (case study: Khuzestan Province). Journal of Cleaner Production, 204, 819–831. https://doi.org/10.1016/j.jclepro.2018.09.031

    Article  Google Scholar 

  3. Kim, D.-S., Hanifzadeh, M., & Kumar, A. (2017). Trend of biodiesel feedstock and its impact on biodiesel emission characteristics. Environmental Progress & Sustainable Energy, 37(1), 7–19. https://doi.org/10.1002/ep.12800

    Article  CAS  Google Scholar 

  4. Montini, T., Monai, M., Beltram, A., Romero-Ocaña, I., & Fornasiero, P. (2016). H2 production by photocatalytic reforming of oxygenated compounds using TiO2-based materials. Materials Science in Semiconductor Processing, 42, 122–130. https://doi.org/10.1016/j.mssp.2015.06.069

    Article  CAS  Google Scholar 

  5. Kumaravel, V., Danyal, I. M., Badreldin, A., Chava, R. K., Yeon, D. J., Kang, M., & Abdel-Wahab, A. (2019). Photocatalytic hydrogen production: Role of sacrificial reagents on the activity of oxide Carbon, and Sulfide Catalysts. Catalysts, 9(3), 276–311. https://doi.org/10.3390/catal9030276

    Article  CAS  Google Scholar 

  6. Taboada, E., Angurell, I., & Llorca, J. (2014). Dynamic photocatalytic hydrogen production from ethanol–water mixtures in an optical fiber honeycomb reactor loaded with Au/TiO2. Journal of Catalysis, 309, 460–467. https://doi.org/10.1016/j.jcat.2013.10.025

    Article  CAS  Google Scholar 

  7. Zhang, H., Zhu, Z., Wu, Y., Zhao, T., & Li, L. (2014). TiO2-photocatalytic acceptorless dehydrogenation coupling of primary alkyl alcohols into acetals. Green Chemistry, 16, 4076–4080. https://doi.org/10.1039/C4GC00413B

    Article  CAS  Google Scholar 

  8. Zhang, H., Zhang, W., Zhao, M., Yang, P., & Zhu, Z. (2017). A site-holding effect of TiO2 surface hydroxyl in the photocatalytic direct synthesis of 1,1-diethoxyethane from ethanol. Chemical Communications, 53, 1518–1521. https://doi.org/10.1039/C6CC09050H

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H., Wu, Y., Li, L., & Zhu, Z. (2015). Photocatalytic direct conversion of ethanol to 1,1- diethoxyethane over noble-metal-loaded TiO2 nanotubes and nanorods. Chemsuschem, 8(7), 1226–1231. https://doi.org/10.1002/cssc.201403305

    Article  CAS  PubMed  Google Scholar 

  10. Agirre, I., Guemez, M. B., Motelica, A., van Veen, H. M., Vented, J. F., & Ariasa, P. L. (2012). A techno-economic comparison of various process options for the production of 1,1-diethoxy butane. Journal of Chemical Technology and Biotechnology, 87, 943–954.

    Article  CAS  Google Scholar 

  11. Gorak, A., & Stankiewicz, A. (Eds.). (2018). Intensification of biobased processes published. Royal Society of Chemistry.

    Google Scholar 

  12. Yan, P., Zhao, J., Cao, B., Li, L., Wang, Z., Tian, X., Jia, S., & Zhu, Z. (2015). Selective Photocatalytic C–C Coupling of Bioethanol into 2,3-Butanediol over Pt-Decorated Hydroxyl-Group-Tunable TiO2 Photocatalysts. ChemCatChem, 7, 2384–2390. https://doi.org/10.1002/cctc.201500326

    Article  CAS  Google Scholar 

  13. Gong, D., Subramaniam, V. P., Highfield, J. G., Tang, Y., Lai, Y., & Chen, Z. (2011). In Situ Mechanistic Investigation at the Liquid/Solid Interface by Attenuated Total Reflectance FTIR: Ethanol Photo-Oxidation over Pristine and Platinized TiO2 (P25). ACS Catalysis, 1(8), 864–871. https://doi.org/10.1021/cs200063q

    Article  CAS  Google Scholar 

  14. Zhang, M., Wang, Q., Chen, C., Zang, L., Ma, W., & Zhao, J. (2009). Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies. Angewandte Chemie International Edition, 48, 6081–6084. https://doi.org/10.1002/anie.200900322

    Article  CAS  PubMed  Google Scholar 

  15. Sannino, D., Vaiano, V., Ciambelli, P., Carotenuto, G., Di Serio, M., & Santacesaria, E. (2013). Enhanced performances of grafted VOx on titania/silica for the selective photocatalytic oxidation of ethanol to acetaldehyde. Catalysis Today, 209, 159–163. https://doi.org/10.1016/j.cattod.2012.12.009

    Article  CAS  Google Scholar 

  16. Furukawa, S., Shishido, T., Teramura, K., & Tanaka, T. (2012). Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. ACS Catalysis, 2, 175–179. https://doi.org/10.1021/cs2005554

    Article  CAS  Google Scholar 

  17. Tsukamoto, D., Ikeda, M., Shiraishi, Y., Hara, T., Idtikuni, N., Tanaka, S., & Hirai, T. (2011). Selective photocatalytic oxidation of alcohols to aldehydes in water by TiO2 partially coated with WO3. Chemistry - A European Journal, 17, 9816–9824. https://doi.org/10.1002/chem.201100166

    Article  CAS  PubMed  Google Scholar 

  18. Sato, S. (1985). Photoelectrochemical preparation of catalysts. Journal of Catalysis, 92, 11–16. https://doi.org/10.1016/0021-9517(85)90232-5

    Article  CAS  Google Scholar 

  19. Suda, Y., Morimoto, T., & Nagao, M. (1987). Adsorption of alcohols on titanium dioxide (rutile) surface. Langmuir, 3, 99–104. https://doi.org/10.1021/la00073a017

    Article  CAS  Google Scholar 

  20. Jayaweera, P. M., Quah, E. L., & Idriss, H. (2007). Photoreaction of ethanol on TiO2(110) single-crystal surface. Journal of Physical Chemistry C, 111(4), 1764–1769. https://doi.org/10.1021/jp0657538

    Article  CAS  Google Scholar 

  21. Fisicaro, G., Filice, S., Scalese, S., Compagnini, G., Reitano, R., & Genovese, L. (2020). Wet environment effects for ethanol and water adsorption on anatase TiO2 (101) surfaces. Journal of Physical Chemistry C, 124, 2406–2419.

    Article  CAS  Google Scholar 

  22. León, C. P., Sagisaka, K., Fujita, D., & Han, L. (2014). Ethanol adsorption on rutile TiO2(110). RSC Advances, 4(17), 8550–8557. https://doi.org/10.1039/C3RA47369D

    Article  Google Scholar 

  23. Zhang, R., Liu, Z., Ling, L., & Wang, B. (2015). The effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and its initial dissociation step: A DFT study. Applied Surface Science, 353, 150–157. https://doi.org/10.1016/j.apsusc.2015.06.059

    Article  CAS  Google Scholar 

  24. Capeletti, M. R., Balzano, L., Puente, C., Laborde, M., & Sedran, U. (2000). Synthesis of acetal (1,1-diethoxyethane) from ethanol and acetaldehyde over acidic catalysts. Applied Catalysis, A: General, 198, L1–L4. https://doi.org/10.1016/S0926-860X(99)00502-5

    Article  CAS  Google Scholar 

  25. Martra, G. (2000). Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: Relationships between surface morphology and chemical behaviour. Applied Catalysis, A: General, 200, 275–285.

    Article  CAS  Google Scholar 

  26. Xu, Y., & Langford, C. H. (2000). Variation of Langmuir adsorption constant determined for TiO2-photocatalyzed degradation of acetophenone under different light intensity. Journal of Photochemistry and Photobiology, A: Chemistry, 133, 67. https://doi.org/10.1016/S1010-6030(00)00220-3

    Article  CAS  Google Scholar 

  27. Singh, M., Zhou, N., Paul, D. K., & Klabunde, K. J. (2008). IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 260, 371–379. https://doi.org/10.1016/j.jcat.2008.07.020

    Article  CAS  Google Scholar 

  28. Rasko, J., & Kiss, J. (2005). Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3. Applied Catalysis A: General, 287, 252–260. https://doi.org/10.1016/j.apcata.2005.04.003

    Article  CAS  Google Scholar 

  29. Bickley, R. I., Gonzalezcarreno, T., Lees, J. S., Palmisano, L., & Tilley, R. J. D. (1991). A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 92, 178–190. https://doi.org/10.1016/0022-4596(91)90255-G

    Article  CAS  Google Scholar 

  30. Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001). Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of Anatase and Rutile crystalline phases. Journal of Catalysis, 203, 82–86. https://doi.org/10.1006/jcat.2001.3316

    Article  CAS  Google Scholar 

  31. Wang, W.-K., Chen, J.-J., Zhang, X., Huang, Y.-X., Li, W.-W., & Yu, H.-Q. (2016). Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Scientific Reports, 6(1), 20491. https://doi.org/10.1038/srep20491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohtani, B., Prieto-Mahaney, O. O., Li, D., & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity tes. Journal of Photochemistry and Photobiology, A: Chemistry, 216(2–3), 179–182. https://doi.org/10.1016/j.jphotochem.2010.07.024

    Article  CAS  Google Scholar 

  33. Sun, B., & Smirniotis, P. G. (2003). Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catalysis Today, 88, 49–59. https://doi.org/10.1016/j.cattod.2003.08.006

    Article  CAS  Google Scholar 

  34. Li, G., Chen, L., Graham, M. E., & Gray, K. A. (2007). A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid–solid interface. Journal of Molecular Catalysis A, 275, 30–35. https://doi.org/10.1016/j.molcata.2007.05.017

    Article  CAS  Google Scholar 

  35. Shen, S., Wang, X., Chen, T., Feng, Z., & Li, C. (2014). Transfer of photoinduced electrons in anatase-rutile TiO2 determined by time-resolved mid-infrared spectroscopy. The Journal of Physical Chemistry C, 118, 12661–12668. https://doi.org/10.1021/jp502912u

    Article  CAS  Google Scholar 

  36. Hurum, D. C., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2005). Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. The Journal of Physical Chemistry B, 109, 977–980. https://doi.org/10.1021/jp045395d

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J., Xu, Q., Feng, Z., Li, M., & Li, C. (2008). Importance of the relationship between surface phases and photocatalytic activity of TiO2, angew. Chem. Int. Ed., 47, 1766–1769. https://doi.org/10.1002/anie.200704788

    Article  CAS  Google Scholar 

  38. Nosaka, Y., Yamashita, Y., & Fukuyama, H. (1997). Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in TiO2 photocatalysis. The Journal of Physical Chemistry B, 101, 5822–5827. https://doi.org/10.1021/jp970400h

    Article  CAS  Google Scholar 

  39. Hirakawa, T., Yawata, K., & Nosaka, Y. (2007). Photocatalytic reactivity for O2− and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Applied Catalysis, A: General, 325, 105–111. https://doi.org/10.1016/j.apcata.2007.03.015

    Article  CAS  Google Scholar 

  40. Zhang, J., & Nosaka, Y. (2014). Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. Journal of Physical Chemistry C, 118, 10824–10832. https://doi.org/10.1021/jp501214m

    Article  CAS  Google Scholar 

  41. Ferretto, L., & Glisenti, A. (2003). Surface acidity and basicity of a rutile powder. Chemistry of Materials, 15, 1181–1188. https://doi.org/10.1021/cm021269f

    Article  CAS  Google Scholar 

  42. Bezrodna, T., Puchkovska, G., Shimanovska, V., Chashechnikova, I., Khalyavka, T., & Baran, J. (2003). Pyridine-TiO2 surface interaction as a probe for surface active centers analysis. Applied Surface Science, 214(1–4), 222–231. https://doi.org/10.1016/S0169-4332(03)00346-5

    Article  CAS  Google Scholar 

  43. Kwon, S., Lin, TCh., & Iglesia, E. (2020). Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. Journal of Catalysis, 383, 60–76. https://doi.org/10.1016/j.jcat.2019.12.043

    Article  CAS  Google Scholar 

  44. Abdouli, I. (2021). Transformation hydrothermale de substrats cellulosiques assistée par la photocatalyse, Doctoral Thesis, University Claude Bernard, Lyon1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guillard.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betts, L.M., Dappozze, F., Hamandi, M. et al. Acetal photocatalytic formation from ethanol in the presence of TiO2 rutile and anatase. Photochem Photobiol Sci 21, 1617–1626 (2022). https://doi.org/10.1007/s43630-022-00244-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00244-w

Keywords

Navigation