Skip to main content

Advertisement

Log in

Continuous artificial light potentially disrupts central and peripheral reproductive clocks leading to altered uterine physiology and reduced pregnancy success in albino mice

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Aims

The mechanism behind clock coordination in female reproductive disorders is poorly understood despite the known importance of coordinated and synchronized timing of central and clocks in reproductive organs. We investigated the effect of continuous artificial light (LL) on the central and peripheral reproductive clock gene (Bmal1, Clock, Per1, Per2 and Cry1) and its downstream regulators (Hgf, PR-A and HOXA10) during non-pregnancy and pregnancy phases of female mice.

Main methods

Mice (n = 60) in two sets, were maintained under continuous light (LL) and natural day cycle (LD;12L: 12D) for both non-pregnant and pregnant study. Tissues from hypothalamus-containing SCN, ovary, uterus and serum were collected at different zeitgeber time points (ZT; at 4-h intervals across 24-h periods).

Key findings

LL exposure desynchronized the expressions of the clock mRNAs (Bmal1, Clock, Per1, Per2 and Cry1) in SCN, ovary, and uterus along with Hgf mRNA rhythm. LL significantly increased the thickness of endometrial tissues. Furthermore, the pregnant study revealed lower serum progesterone level during peri- and post-implantation under LL along with downregulated expression of progesterone receptor (PR) as well as progesterone dependent uterine Homeobox A-10 (Hoxa10) proteins with lowered pregnancy outcomes.

Significance

Our result suggests that LL disrupted the circadian coordination between central and clock genes in reproductive tissue leading to interrupted uterine physiology and altered pregnancy in mice. This led us to propose that duration of light exposure at work-places or home for females is very important in prevention of pregnancy anomalies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Plano, S. A., Casiraghi, L. P., Garcia, M. P., Paladino, N., Golombek, D. A., & Chiesa, J. J. (2017). Circadian and metabolic effects of light: implications in weight homeostasis and health. Frontiers in Neurology, 8, 558. https://doi.org/10.3389/fneur.2017.00558

    Article  PubMed  PubMed Central  Google Scholar 

  2. Reppert, S. M., & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature, 418(6901), 935–941. https://doi.org/10.1038/nature00965

    Article  CAS  PubMed  Google Scholar 

  3. Tasaki, H., Zhao, L., Isayama, K., Chen, H., Yamauchi, N., Shigeyoshi, Y., Hashimoto, S., & Hattori, M. (2013). Profiling of circadian genes expressed in the uterus endometrial stromal cells of pregnant rats as revealed by DNA microarray coupled with RNA interference. Frontiers in Endocrinology, 4, 82. https://doi.org/10.3389/fendo.2013.00082

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hsu, C. N., & Tain, Y. L. (2020). Light and circadian signaling pathway in pregnancy: programming of adult health and disease. International Journal of Molecular Sciences, 21(6), 2232. https://doi.org/10.3390/ijms21062232

    Article  CAS  PubMed Central  Google Scholar 

  5. Touitou, Y., Reinberg, A., & Touitou, D. (2017). Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Science, 173, 94–106. https://doi.org/10.1016/j.lfs.2017.02.008

    Article  CAS  Google Scholar 

  6. Dolatshad, H., Campbell, E. A., O’Hara, L., Maywood, E. S., Hastings, M. H., & Johnson, M. H. (2006). Developmental and reproductive performance in circadian mutant mice. Human Reproduction, 21(1), 68–79. https://doi.org/10.1093/humrep/dei313

    Article  CAS  PubMed  Google Scholar 

  7. Miller, B. H., Olson, S. L., Turek, F. W., Levine, J. E., Horton, T. H., & Takahashi, J. S. (2004). Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Current Biology, 14(15), 1367–1373. https://doi.org/10.1016/j.cub.2004.07.055

    Article  CAS  PubMed  Google Scholar 

  8. Kaneshi, Y., Ohta, H., Morioka, K., Hayasaka, I., Uzuki, Y., Akimoto, T., Moriichi, A., Nakagawa, M., Oishi, Y., Wakamatsu, H., Honma, N., Suma, H., Sakashita, R., Tsujimura, S., Higuchi, S., Shimokawara, M., Cho, K., & Minakami, H. (2016). Influence of light exposure at nighttime on sleep development and body growth of preterm infants. Scientific Reports, 6, 21680. https://doi.org/10.1038/srep21680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pietroiusti, A., Neri, A., Somma, G., Coppeta, L., Iavicoli, I., Bergamaschi, A., & Magrini, A. (2010). Incidence of metabolic syndrome among night-shift healthcare workers. Journal of Occupational and Environmental Medicine, 67, 54–57. https://doi.org/10.1136/oem.2009.046797

    Article  CAS  Google Scholar 

  10. Zhu, J. L., Hjollund, N. H., Andersen, A. M., & Olsen, J. (2004). Shift work job stress and late fetal loss: The National Birth Cohort in Denmark. Journal of Occupational and Environmental Medicine, 46(11), 1144–1149. https://doi.org/10.1097/01.jom.0000145168.21614.21

    Article  PubMed  Google Scholar 

  11. Fielder, A. R., & Moseley, M. J. (2000). Environmental light and the preterm infant. Seminars in Perinatology, 24(4), 291–298. https://doi.org/10.1053/sper.2000.8597

    Article  CAS  PubMed  Google Scholar 

  12. Mirmiran, M., & Ariagno, R. L. (2000). Influence of light in the NICU on the development of circadian rhythms in preterm infants. Seminars in Perinatology, 24(4), 247–257. https://doi.org/10.1053/sper.2000.8593

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein, C. A., O’Brien, L. M., Bergin, I. L., & Saunders, T. L. (2018). The effect of repeated light-dark shifts on uterine receptivity and early gestation in mice undergoing embryo transfer. Systems Biology in Reproductive Medicine, 64(2), 103–111. https://doi.org/10.1080/19396368.2017.1408715

    Article  PubMed  Google Scholar 

  14. Fernandez, R. C., Marino, J. L., Varcoe, T. J., Davis, S., Moran, L. J., Rumbold, A. R., Brown, H. M., Whitrow, M. J., Davies, M. J., & Moore, V. M. (2016). Fixed or rotating night shift work undertaken by women: implications for fertility and miscarriage. Seminars in Reproductive Medicine, 34(2), 74–82. https://doi.org/10.1055/s-0036-1571354

    Article  PubMed  Google Scholar 

  15. Stocker, L. J., Macklon, N. S., Cheong, Y. C., & Bewley, S. J. (2014). Influence of shift work on early reproductive outcomes: a systematic review and meta-analysis. Obstetrics & Gynecology, 124(1), 99–110. https://doi.org/10.1097/AOG.0000000000000321

    Article  Google Scholar 

  16. Summa, K. C., Vitaterna, M. H., & Turek, F. W. (2012). Environmental perturbation of the circadian clock disrupts pregnancy in the mouse. PLoS ONE, 7(5), e37668. https://doi.org/10.1371/journal.pone.0037668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Valenzuela, F. J., Vera, J., Venegas, C., Pino, F., & Lagunas, C. (2015). Circadian system and melatonin hormone: risk factors for complications during pregnancy. Obstetrics and Gynecology International, 2015, 825802. https://doi.org/10.1155/2015/825802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. King, D. P., & Takahashi, J. S. (2000). Molecular genetics of circadian rhythms in mammals. Annual Review of Neuroscience, 23, 713–742. https://doi.org/10.1146/annurev.neuro.23.1.713

    Article  CAS  PubMed  Google Scholar 

  19. Blume, C., Garbazza, C., & Spitschan, M. (2019). Effects of light on human circadian rhythms, sleep and mood. Somnologie, 23(3), 147–156. https://doi.org/10.1007/s11818-019-00215-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Portaluppi, F., Smolensky, M. H., & Touitou, Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiology International, 27(9–10), 1911–1929. https://doi.org/10.3109/07420528.2010.516381

    Article  PubMed  Google Scholar 

  21. Sinhasane, S. V., & Joshi, B. N. (1998). Impact of aggressive encounters on reproductive behaviour in the Indian desert gerbil, Meriones hurrianae (Jerdon). Journal of Biosciences, 23, 633–639. https://doi.org/10.1007/BF02709176

    Article  Google Scholar 

  22. Quennell, J. H., Howell, C. S., Roa, J., Augustine, R. A., Grattan, D. R., & Anderson, G. M. (2011). Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology, 152(4), 1541–1550. https://doi.org/10.1210/en.2010-1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng, T. R., Li, Z., & Li, S. X. (2020). Effects of constant light on the circadian system in rats. Austin Journal of Pharmacology and Therapeutics, 8(2), 1121.

    Google Scholar 

  24. Hardy, D. F. (1970). The effect of constant light on the estrous cycle and behavior of the female rat. Physiology & Behavior, 5(4), 421–425. https://doi.org/10.1016/0031-9384(70)90246-5

    Article  CAS  Google Scholar 

  25. Paccola, C. C., Resende, C. G., Stumpp, T., Miraglia, S. M., & Cipriano, I. (2013). The rat estrous cycle revisited: a quantitative and qualitative analysis. Animal Reproduction, 10, 677–683.

    Google Scholar 

  26. Shukla, D., Das, M., Kasade, D., Pandey, M., Dubey, A. K., Yadav, S. K., & Parmar, A. S. (2020). Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. Chemosphere, 248, 125998. https://doi.org/10.1016/j.chemosphere.2020.125998

    Article  CAS  PubMed  Google Scholar 

  27. Pakrasi, P. L., & Jain, A. K. (2008). Cyclooxygenase-2 derived PGE2 and PGI2 play an important role via EP2 and PPAR delta receptors in early steps of oil induced decidualization in mice. Placenta, 29(6), 523–530. https://doi.org/10.1016/j.placenta.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  28. Wharfe, M. D., Mark, P. J., Wyrwoll, C. S., Smith, J. T., Yap, C., Clarke, M. W., & Waddell, B. J. (2016). Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids. Journal of Endocrinology, 228(3), 135–47. https://doi.org/10.1530/JOE-15-0405

    Article  CAS  PubMed  Google Scholar 

  29. Mishra, I., Knerr, R. M., Stewart, A. A., Payette, W. I., Richter, M. M., & Ashley, N. T. (2019). Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Scientific Reports, 9(1), 15833. https://doi.org/10.1038/s41598-019-51791-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  31. Chowdhury, J. P., & Haldar, C. (2018). Photoperiodic regulation of ovarian steroidogenesis in a tropical rodent, Funambulus pennanti: role of melatonin and MT1. Biological Rhythm Research, 51, 102–119. https://doi.org/10.1080/09291016.2018.1525134

    Article  CAS  Google Scholar 

  32. Yadav, S. K., Haldar, C., & Singh, S. S. (2011). Variation in melatonin receptors (Mel1a and Mel1b) and androgen receptor (AR) expression in the spleen of a seasonally breeding bird, Perdicula asiatica. Journal of Reproductive Immunology, 92(1–2), 54–61. https://doi.org/10.1016/j.jri.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  33. Amano, T., Ripperger, J. A., & Albrecht, U. (2020). Changing the light schedule in late pregnancy alters birth timing in mice. Theriogenology, 154, 212–222. https://doi.org/10.1016/j.theriogenology.2020.05.032

    Article  CAS  PubMed  Google Scholar 

  34. Pawlik, T. M., Hawke, D. H., Liu, Y., Krishnamurthy, S., Fritsche, H., Hunt, K. K., & Kuerer, H. M. (2006). Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer, 6, 68. https://doi.org/10.1186/1471-2407-6-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakamura, T. J., Moriya, T., Inoue, S., Shimazoe, T., Watanabe, S., Ebihara, S., & Shinohara, K. (2005). Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. Journal of Neuroscience Research, 82(5), 622–30. https://doi.org/10.1002/jnr.20677

    Article  CAS  PubMed  Google Scholar 

  36. Sudo, M., Sasahara, K., Moriya, T., Akiyama, M., Hamada, T., & Shibata, S. (2003). Constant light housing attenuates circadian rhythms of mPer2 mRNA and mPER2 protein expression in the suprachiasmatic nucleus of mice. Neuroscience, 121(2), 493–499. https://doi.org/10.1016/s0306-4522(03)00457-3

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y., Chen, M., Xu, J., Liu, X., Duan, Y., Zhou, C., & Xu, Y. (2020). Core clock gene Bmal1 deprivation impairs steroidogenesis in mice luteinized follicle cells. Reproduction, 160(6), 955–967. https://doi.org/10.1530/REP-20-0340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura, T. J., Sellix, M. T., Kudo, T., Nakao, N., Yoshimura, T., Ebihara, S., Colwell, C. S., & Block, G. D. (2010). Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels. Steroids, 75(3), 203–12. https://doi.org/10.1016/j.steroids.2010.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He, P. J., Hirata, M., Yamauchi, N., & Hattori, M. A. (2007). Up-regulation of Per1 expression by estradiol and progesterone in the rat uterus. Journal of Endocrinology, 194(3), 511–519. https://doi.org/10.1677/JOE-07-0172

    Article  CAS  PubMed  Google Scholar 

  40. Karman, B. N., & Tischkau, S. A. (2006). Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biology of reproduction, 75(4), 624–32. https://doi.org/10.1095/biolreprod.106.050732

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura, T. (1991). Structure and function of hepatocyte growth factor. Progress in Growth Factor Research, 3(1), 67–85. https://doi.org/10.1016/0955-2235(91)90014-u

    Article  CAS  PubMed  Google Scholar 

  42. Sen, A., & Hoffmann, H. M. (2020). Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Molecular and Cellular Endocrinology, 501, 110655. https://doi.org/10.1016/j.mce.2019.110655

    Article  CAS  PubMed  Google Scholar 

  43. Shiraga, M., Komatsu, N., Teshigawara, K., Okada, A., Takeuchi, S., Fukamachi, H., & Takahashi, S. (2000). Epidermal growth factor stimulates proliferation of mouse uterine epithelial cells in primary culture. Zoological Science, 17(5), 661–666. https://doi.org/10.2108/zsj.17.661

    Article  CAS  PubMed  Google Scholar 

  44. Nicolaides, N. C., Charmandari, E., Chourousos, G. P., & Kino, T. (2014). Circadian endocrine rhythms: the hypothalamic–pituitary–adrenal axis and its actions. Annals of the New York Academy, 1318, 71–80. https://doi.org/10.1111/nyas.12464

    Article  CAS  Google Scholar 

  45. Islam, M. R., Yamagami, K., Yoshii, Y., & Yamauchi, N. (2016). Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro. Journal of Reproduction and Development, 62(3), 271–278. https://doi.org/10.1262/jrd.2015-158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brandon, D. H., Holditch, D. D., & Belyea, M. (2002). Preterm infants born at less than 31 weeks’ gestation have improved growth in cycled light compared with continuous near darkness. The Journal of Pediatrics, 140(2), 192–199. https://doi.org/10.1067/mpd.2002.121932

    Article  PubMed  Google Scholar 

  47. Matsumoto, K., & Nakamura, T. (1993). Roles of HGF as a pleiotropic factor in organ regeneration. EXS, 65, 225–249.

    CAS  PubMed  Google Scholar 

  48. Serber, D. W., Rogala, A., Makarem, M., Rosson, G. B., Simin, K., Godfrey, V., Van Dyke, T., Eaves, C. J., & Bultman, S. J. (2012). The BRG1 chromatin remodeler protects against ovarian cysts, uterine tumors, and mammary tumors in a lineage-specific manner. PLoS ONE, 7(2), e31346. https://doi.org/10.1371/journal.pone.0031346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Folkins, A. K., Nevadunsky, N. S., Saleemuddin, A., Jarboe, E. A., Muto, M. G., Feltmate, C. M., Crum, C. P., & Hirsch, M. S. (2010). Evaluation of vascular space involvement in endometrial adenocarcinomas: laparoscopic vs abdominal hysterectomies. Modern Pathology, 23(8), 1073–1079. https://doi.org/10.1038/modpathol.2010.91

    Article  PubMed  Google Scholar 

  50. Evans, G. S., Gibson, D. F., Roberts, S. A., Hind, T. M., & Potten, C. S. (1990). Proliferative changes in the genital tissue of female mice during the oestrous cycle. Cell and tissue kinetics, 23(6), 619–635. https://doi.org/10.1111/j.1365-2184.1990.tb01350.x

    Article  CAS  PubMed  Google Scholar 

  51. Godbole, G., Suman, P., Malik, A., Galvankar, M., Joshi, N., Fazleabas, A., Gupta, S. K., & Modi, D. (2017). Decrease in expression of HOXA10 in the decidua after embryo implantation promotes trophoblast invasion. Endocrinology, 158(8), 2618–2633. https://doi.org/10.1210/en.2017-00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yin, Y., Lin, V., Sawalha, D., Bany, B. M., & Ma, L. (2011). Molecular analysis of implantation defects in homeobox gene HOXA10-deficient mice. Reproductive System and Sexual Disorders, S1, 001. https://doi.org/10.4172/2161-038X.S1-001

    Article  Google Scholar 

  53. Lee, K. Y., Jeong, J. W., Tsai, S. Y., Lydon, J. P., & DeMayo, F. J. (2007). Mouse models of implantation. TEM, 18(6), 1043–2760. https://doi.org/10.1016/j.tem.2007.06.002

    Article  CAS  Google Scholar 

  54. Mulac-Jericevic, B., Mullinax, R. A., DeMayo, F. J., Lydon, J. P., & Conneely, O. M. (2000). Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science, 289(5485), 1751–1754. https://doi.org/10.1126/science.289.5485.1751

    Article  CAS  PubMed  Google Scholar 

  55. Lim, H., Ma, L., Ma, W. G., Maas, R. L., & Dey, S. K. (1999). HOXA-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Molecular Endocrinology, 13(6), 1005–1017. https://doi.org/10.1210/mend.13.6.0284

    Article  CAS  PubMed  Google Scholar 

  56. Taylor, H., Arici, A., Olive, D., & Igarashi, P. (1998). HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. Journal of Clinical Investigation, 101(7), 1379–1384. https://doi.org/10.1172/JCI1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lydon, J. P., DeMayo, F. J., Funk, C. R., Mani, S. K., Hughes, A. R., Montgomery, C. A., Shyamala, G., Conneely, O. M., & O’Malley, B. W. (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes & Development, 9(18), 2266–2278. https://doi.org/10.1101/gad.9.18.2266

    Article  CAS  Google Scholar 

  58. Ohara, T., Nakamura, T. J., Nakamura, W., & Tokuda, I. T. (2020). Modeling circadian regulation of ovulation timing: age-related disruption of estrous cyclicity. Scientific Reports, 10, 16767. https://doi.org/10.1038/s41598-020-73669-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller, B. H., & Takahashi, J. S. (2014). Central circadian control of female reproductive function. Frontiers in endocrinology, 4, 195. https://doi.org/10.3389/fendo.2013.00195

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank UGC-Non-NET fellowship (UGC-RESEARCH-FELLOW2017-18/41147) and ICMR-SRF fellowship (Award No RBMH/FW/2019/6) to Ms. Megha Das, ICMR adhoc project (P-14/267) research grant to Dr. S. K Yadav, Centre for Advance Studies (CAS) facilities to Department of Zoology and Institute of Life Science (ISLS) for permission to use Real-Time PCR facility and Nanodrop Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Yadav.

Ethics declarations

Conflict of interest

The authors have no conflict of interest that could be distinguished as discriminating the impartiality of the review reported.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 90 KB)

Supplementary file2 (DOC 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M., Minocha, T., Kumar, D. et al. Continuous artificial light potentially disrupts central and peripheral reproductive clocks leading to altered uterine physiology and reduced pregnancy success in albino mice. Photochem Photobiol Sci 21, 1217–1232 (2022). https://doi.org/10.1007/s43630-022-00210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00210-6

Keywords

Navigation