Skip to main content
Log in

Spatial distribution of single guest molecules along thickness of thin films of poly(2-hydroxyethyl acrylate)

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have investigated three-dimensional distribution and diffusion behaviors of single guest dyes in 1-µm thick films of poly(2-hydroxyethyl acrylate) (PHEA) by using astigmatism imaging method. Perylene diimide derivative (BP-PDI) in the PHEA films localized along the Z-axis at ca. Z = 600–700 nm distant from the interface (Z = 0) between PHEA and glass substrate. This Z-localization was not observed in different polymer films of poly(methyl methacrylate) (PMMA), poly(methyl acrylate) (PMA), and polystyrene (PSt). Because the glass transition temperature of the PHEA is lower than the room temperature, BP-PDI in the PHEA films exhibited Brownian motion, normal diffusion on the XY plane and confined motion along the Z-direction. For elucidating the mechanism of the peculiar localization of the guest dyes along film thickness in the PHEA films, we measured diffusion behaviors of different dyes, R6G and Atto 488, in 1-µm thick PHEA films, obtaining result that the Z-distributions of the dyes were overall similar to that of BP-PDI. The result indicates that the Z-localization of the guest dyes should be ascribed not to the interaction between glass surface and guest dye but mainly to the Z-dependent property of the PHEA film. Indeed, the lateral diffusion coefficients of the guest dyes depended on their Z-positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Minsk, L. M., Smith, J. G., Van Deusen, W. P., & Wright, J. F. (1959). Photosensitive polymers. I. Cinnamate esters of poly(vinyl alcohol) and cellulose. Journal of Applied Polymer Science, 2, 302–307.

    Article  CAS  Google Scholar 

  2. Fouassier, J. P. (1995). Photoinitiation, photopolymerization and photocuring—Fundamentals and applications. Hanser Publisher.

    Google Scholar 

  3. Feldman, M. (2014). Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems (Woodhead Publishing series in electronic and optical materials no. 42). Woodhead Pub.

    Google Scholar 

  4. Bargon, J. (1984). Methods and materials in microelectronic technology (The IBM research symposia series). Springer.

    Book  Google Scholar 

  5. Takei, S., Oshima, A., Ichikawa, T., Sekiguchi, A., Kashiwakura, M., Kozawa, T., et al. (2014). Organic solvent-free water-developable sugar resist material derived from biomass in green lithography. Microelectronic Engineering, 122, 70–76.

    Article  CAS  Google Scholar 

  6. Ito,H. (2008). Rise of chemical amplification resists from laboratory curiosity to paradigm enabling Moore's law. In Proc. SPIE–Int. soc. opt. eng. (Vol. 6923, p. 692302).

  7. Takei,S., Sakaida, Y., Shinjo, T., Hashimoto, K., & Nakajima, Y. (2008). High-etch-rate bottom-antireflective coating and gap-fill materials using dextrin derivatives in via first dual-damascene lithography process. In Proc. SPIE–Int. Soc. Opt. Eng. (Vol. 6923, p. 69232).

  8. Knoll, M., & Ruska, E. (1932). Beitrag zur geometrischen Elektronenoptik. I. Annalen der Physik, 12, 607–640.

    Article  Google Scholar 

  9. Ruska, E. (1986). The emergence of the electron microscope: Connection between realization and first patent application, documents of an invention. Journal of Ultrastructure and Molecular Structure Research, 95, 3–28.

    Article  Google Scholar 

  10. Freundlich, M. (1963). Origin of the electron microscope. Science, 142, 185.

    Article  CAS  Google Scholar 

  11. Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1982). Surface studies by scanning tunneling microscopy. Physical Review Letters, 49, 57–61.

    Article  Google Scholar 

  12. Binnig, G., Rohrer, H., Gerber, C., & Weibel, E. (1983). 7 × 7 Reconstruction on Si(111) resolved in real space. Physical Review Letters, 50, 120–123.

    Article  CAS  Google Scholar 

  13. Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.

    Article  CAS  Google Scholar 

  14. Betzig, E., Lewis, A., Harootunian, A., Isaacson, M., & Kratschmer, E. (1986). Near field scanning optical microscopy (NSOM): Development and biophysical applications. Biophysical Journal, 49, 269–279.

    Article  CAS  Google Scholar 

  15. Wilson, T., & Sheppard, C. (1984). Theory and practice of scanning optical microscopy. Academic Press.

    Google Scholar 

  16. Macklin, J. J., Trautman, J. K., Harris, T. D., & Brus, L. E. (1996). Imaging and time-resolved spectroscopy of single molecules at an interface. Science, 272, 255–258.

    Article  CAS  Google Scholar 

  17. Weston, K. D., Carson, P. J., Metiu, H., & Buratto, S. K. (1998). Room-temperature fluorescence characteristics of single dye molecules adsorbed on a glass surface. The Journal of Chemical Physics, 109, 7474–7485.

    Article  CAS  Google Scholar 

  18. Gelles, J., Schnapp, B. J., & Sheetz, M. P. (1988). Tracking kinesin-driven movements with nanometre-scale precision. Nature, 331, 450–453.

    Article  CAS  Google Scholar 

  19. Qian, H., Sheetz, M. P., & Elson, E. L. (1991). Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophysical Journal, 60, 910–921.

    Article  CAS  Google Scholar 

  20. Ito, S., Kusumi, T., Takei, S., & Miyasaka, H. (2009). Diffusion processes of single fluorescent molecules in a polymer-based thin material with three-dimensional network. Chemical Communications, 41, 6165–6167.

    Article  Google Scholar 

  21. Ito, S., Itoh, K., Pramanik, S., Kusumi, T., Takei, S., & Miyasaka, H. (2009). Evaluation of diffusion coefficient in a dextrin-based photo-curable material by single molecule tracking. Applied Physics Express, 2, 075004.

    Article  Google Scholar 

  22. Ito, S., Fukuya, S., Kusumi, T., Ishibashi, Y., Miyasaka, H., Goto, Y., Ikai, M., Tani, T., & Inagaki, S. (2009). Microscopic structure and mobility of guest molecules in mesoporous hybrid organosilica: Evaluation with single molecule tracking. Journal of Physical Chemistry C, 113, 11884–11891.

    Article  CAS  Google Scholar 

  23. Dedecker, P., Muls, B., Deres, A., Uji-i, H., Hotta, J., Sliwa, M., Soumillion, J.-P., Müllen, K., Enderlein, J., & Hofkens, J. (2009). Defocused wide-field imaging unravels structural and temporal heterogeneity in complex systems. Advanced Materials, 21, 1079–1090.

    Article  CAS  Google Scholar 

  24. Tran-Ba, K.-H., Finley, J. J., Higgins, D. A., & Ito, T. (2012). Single-molecule tracking studies of millimeter-scale cylindrical domain alignment in polystyrene−poly(ethylene oxide) diblock copolymer films induced by solvent vapor penetration. Journal of Physical Chemistry Letters, 3, 1968–1973.

    Article  CAS  Google Scholar 

  25. Coceancigh, H., Higgins, D. A., & Ito, T. (2019). Optical microscopic techniques for synthetic polymer characterization. Analytical Chemistry, 91, 405–424.

    Article  CAS  Google Scholar 

  26. Qiang, Z., & Wang, M. (2020). 100th anniversary of macromolecular science viewpoint: Enabling advances in fluorescence microscopy techniques. ACS Macro Letters, 9, 1342–1356.

    Article  Google Scholar 

  27. Krause, S., Neumann, M., Fröbe, M., Magerle, R., & von Borczyskowski, C. (2016). Monitoring nanoscale deformations in a drawn polymer melt with single-molecule fluorescence polarization microscopy. ACS Nano, 10, 1908–1917.

    Article  CAS  Google Scholar 

  28. Baier, M., Wöll, D., & Mecking, S. (2018). Diffusion of molecular and macromolecular polyolefin probes in cylindrical block copolymer structures as observed by high temperature single molecule fluorescence microscopy. Macromolecules, 51, 1873–1884.

    Article  CAS  Google Scholar 

  29. Pin Kao, H., & Verkman, A. S. (1994). Tracking of single fluorescent particles in three dimensions: Use of cylindrical optics to encode particle position. Biophysical Journal, 67, 1291–1300.

    Article  Google Scholar 

  30. Huang, B., Wang, W., Bates, M., & Zhuang, X. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810–813.

    Article  CAS  Google Scholar 

  31. Ito, S., Taga, Y., Hiratsuka, K., Takei, S., Kitagawa, D., Kobatake, S., & Miyasaka, H. (2015). Restricted diffusion of guest molecules in polymer thin films on solid substrates as revealed by three-dimensional single-molecule tracking. Chemical Communications, 51, 13756–13759.

    Article  CAS  Google Scholar 

  32. Ermak, D. L., & McCammon, J. A. (1978). Brownian dynamics with hydrodynamic interactions. The Journal of Chemical Physics, 69, 1352–1360.

    Article  CAS  Google Scholar 

  33. Ito, S., Toitani, N., Yamauchi, H., & Miyasaka, H. (2010). Evaluation of radiation force acting on macromolecules by combination of Brownian dynamics simulation with fluorescence correlation spectroscopy. Physical Review E, 81, 061402.

    Article  Google Scholar 

  34. Keddie, J. L., Jones, R. A. L., & Cory, R. A. (1994). Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discussions, 98, 219–230.

    Article  CAS  Google Scholar 

  35. Wallace, W. E., van Zanten, J. H., & Wu, W. L. (1995). Influence of an impenetrable interface on a polymer glass-transition temperature. Physical Review E, 52, R3329–R3332.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by JSPS KAKENHI Grant Numbers JP16H06505, JP26107002, JP26107013, JP18K19057, JP21K18934, JP21H04964, JP21H04640, and JP21KK0092 and by JST-Mirai Program Grant Number JPMJMI21G1, Japan. This work is also supported by Frontier Photonic Sciences Project of National Institutes of Natural Sciences (NINS) (Grant Number 01212010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syoji Ito or Hiroshi Miyasaka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2742 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, S., Hiratsuka, K., Takei, S. et al. Spatial distribution of single guest molecules along thickness of thin films of poly(2-hydroxyethyl acrylate). Photochem Photobiol Sci 21, 175–184 (2022). https://doi.org/10.1007/s43630-021-00147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00147-2

Keywords

Navigation