Skip to main content
Log in

Novel UV filters from Pentacalia pulchella extracts with photoprotective properties and antioxidant activity

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Most of the plant species found in the high mountain ecosystems of the tropics is unique and exceptional, because they have developed complex adaptations to survive in extreme environmental conditions, such as high levels of UVR and low temperatures of these ecological environments. In an exploratory study carried out on some plants of this ecosystem, we found that one of the most promising species was the Pentacalia pulchella (Kunth) Cuatrec. (Asteraceae) an endemic plant of Colombia, which grows between 2500 and 3500 m.a.s.l. Therefore, the objective of this work was to evaluate the photoprotective, antioxidant, and chemical composition of extracts from the leaves of P. pulchella. Extracts showed good absorption coefficients in UVA-UVB, high content of total phenols, with antioxidant activity comparable to that obtained with butylhydroxytoluene (BHT). Finally, the formulation labeled “7” with 10% extract presented adequate sensory characteristics for topical use, good in vitro photoprotection values in the UVA–UVB range (SPF (Sun Protection Factor): 7.3 ± 0.9, UVAPF (Ultraviolet A Protection Factor): 5.3 ± 0.6, λc 376), and antioxidant activity. Results obtained allow us to suggest that the extract of P. pulchella has a high potential as a source of new natural solar filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Simões, M. C. F., Sousa, J. J. S., & Pais, A. A. C. C. (2015). Skin cancer and new treatment perspectives: a review. Cancer Letters, 357, 8–42. https://doi.org/10.1016/j.canlet.2014.11.001

    Article  PubMed  CAS  Google Scholar 

  2. Gilaberte, Y., & González, S. (2010). Update on photoprotection. Actas Dermo-Sifiliográficas, 101, 659–672. https://doi.org/10.1016/S1578-2190(10)70696-X

    Article  PubMed  CAS  Google Scholar 

  3. Seité, S., Moyal, D., Verdier, M.-P., Hourseau, C., & Fourtanier, A. (2000). Accumulated p53 protein and UVA protection level of sunscreens. Photodermatology, Photoimmunology and Photomedicine, 16, 3–9. https://doi.org/10.1034/j.1600-0781.2000.160103.x

    Article  PubMed  Google Scholar 

  4. de Gruijl, F. R. (1999). Skin cancer and solar UV radiation. European Journal of Cancer, 35, 2003–2009. https://doi.org/10.1016/S0959-8049(99)00283-X

    Article  PubMed  Google Scholar 

  5. Halliday, G. M., Byrne, S. N., Kuchel, J. M., Poon, T. S. C., & Barnetson, R. S. C. (2004). The suppression of immunity by ultraviolet radiation: UVA, nitric oxide and DNA damage. Photochemical & Photobiological Sciences, 3, 736–740. https://doi.org/10.1039/B313199H

    Article  CAS  Google Scholar 

  6. Pinnell, S. R. (2003). Cutaneous photodamage, oxidative stress, and topical antioxidant protection. Journal of the American Academy of Dermatology, 48, 1–19. https://doi.org/10.1067/mjd.2003.16 Quiz 20–2.

    Article  PubMed  Google Scholar 

  7. Khan, T., Date, A., Chawda, H., & Patel, K. (2019). Polysaccharides as potential anticancer agents—a review of their progress. Carbohydrate Polymers, 210, 412–428. https://doi.org/10.1016/j.carbpol.2019.01.064

    Article  PubMed  CAS  Google Scholar 

  8. Carrasco-Ríos, L. (2009). Efecto de la radiación ultravioleta-B en plantas. Idesia (Arica), 27, 59–76. https://doi.org/10.4067/S0718-34292009000300009

    Article  Google Scholar 

  9. Agati, G., Galardi, C., Gravano, E., Romani, A., Applicata, F., Nazionale, C., Infm, S., & Tattini, M. (2002). Flavonoid distribution in tissues of Phillyrea latifolia L. leaves as estimated by microspectrofluorometry and multispectral fluorescence microimaging. Photochemistry and Photobiology, 76, 350–360.

    Article  CAS  Google Scholar 

  10. Zu, Y., Pang, H.-H., Yu, J.-H., Li, D.-W., Wei, X.-X., Gao, Y.-X., & Tong, L. (2010). Responses in the morphology, physiology and biochemistry of Taxus chinensis var mairei grown under supplementary UV-B radiation. The Journal of Photochemistry and Photobiology B: Biology, 98, 152–158. https://doi.org/10.1016/j.jphotobiol.2009.12.001

    Article  CAS  Google Scholar 

  11. Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186, 786–793. https://doi.org/10.1111/j.1469-8137.2010.03269.x

    Article  CAS  Google Scholar 

  12. Agati, G., Brunetti, C., Di Ferdinando, M., Ferrini, F., Pollastri, S., & Tattini, M. (2013). Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiology and Biochemistry, 72, 35–45. https://doi.org/10.1016/j.plaphy.2013.03.014

    Article  PubMed  CAS  Google Scholar 

  13. Quattrocchio, F., Baudry, A., Lepiniec, L., & Grotewold, E. (2006). The regulation of flavonoid biosynthesis. In E. Grotewold (Ed.), The science of flavonoids SE—4 (pp. 97–122). Springer. https://doi.org/10.1007/978-0-387-28822-2_4

    Chapter  Google Scholar 

  14. Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5, 218–223. https://doi.org/10.1016/S1369-5266(02)00256-X

    Article  PubMed  CAS  Google Scholar 

  15. Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., & Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of Plant Physiology, 168, 204–212. https://doi.org/10.1016/j.jplph.2010.07.016

    Article  PubMed  CAS  Google Scholar 

  16. Guidi, L., Brunetti, C., Fini, A., Agati, G., Ferrini, F., Gori, A., & Tattini, M. (2016). UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and the de-epoxidation of xanthophylls: Consequence for photoprotection? Environmental and Experimental Botany, 127, 14–25. https://doi.org/10.1016/j.envexpbot.2016.03.002

    Article  CAS  Google Scholar 

  17. Mejía-Giraldo, J. C., Atehortúa, L., & Puertas-Mejía, M. Á. (2014). Foto-protección: mecanismos bioquímicos, punto de partida hacia mejores filtros solares. Dermatología Cosmética, Médica y Quirúrgica, 12, 272–281.

    Google Scholar 

  18. F’guyer, S., Afaq, F., & Mukhtar, H. (2003). Photochemoprevention of skin cancer by botanical agents. Photodermatology, Photoimmunology and Photomedicine, 19, 56–72. https://doi.org/10.1034/j.1600-0781.2003.00019.x

    Article  PubMed  Google Scholar 

  19. Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740, 101–107. https://doi.org/10.1016/j.bbadis.2004.12.006

    Article  PubMed  CAS  Google Scholar 

  20. Whitehead, K., & Hedges, J. I. (2005). Photodegradation and photosensitization of mycosporine-like amino acids. Journal of Photochemistry and Photobiology B: Biology, 80, 115–121. https://doi.org/10.1016/j.jphotobiol.2005.03.008

    Article  CAS  Google Scholar 

  21. Edreva, A. (2005). The importance of non-photosynthetic pigments and cinnamic acid derivatives in photoprotection. Agriculture, Ecosystems and Environment, 106, 135–146. https://doi.org/10.1016/j.agee.2004.10.002

    Article  CAS  Google Scholar 

  22. Verschooten, L., Claerhout, S., Laethemii, A. V., Agostinis, P., & Garmyn, M. (2006). New strategies of photoprotection. Photochemistry and Photobiology, 82, 1016–1023.

    Article  CAS  Google Scholar 

  23. Svobodová, A., Psotová, J., & Walterová, D. (2003). Natural phenolics in the prevention of UV-induced skin damage. A review. Biomedical Paper, 147, 137–145. https://doi.org/10.5507/bp.2003.019

    Article  Google Scholar 

  24. Katiyar, S. K., Perez, A., & Mukhtar, H. (2000). Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA. Clinical Cancer Research, 6, 3864–3869.

    PubMed  CAS  Google Scholar 

  25. Zaid, M. A., Afaq, F., Syed, D. N., & Mukhtar, H. (2009). Chapter 8–botanical antioxidants for protection against damage from sunlight. In A. Tabor & R. M. C. Blair (Eds.), Personal care and cosmetic technology (pp. 161–183). William Andrew Publishing. https://doi.org/10.1016/B978-0-8155-2029-0.50015-6

    Chapter  Google Scholar 

  26. Yamaguchi, L. F., Vassão, D. G., Kato, M. J., & Di Mascio, P. (2005). Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry, 66, 2238–2247. https://doi.org/10.1016/j.phytochem.2004.11.014

    Article  PubMed  CAS  Google Scholar 

  27. Masaki, H. (2010). Role of antioxidants in the skin: anti-aging effects. Journal of Dermatological Science, 58, 85–90. https://doi.org/10.1016/j.jdermsci.2010.03.003

    Article  PubMed  CAS  Google Scholar 

  28. Monsalve-Bustamante, Y. A. Y. A., Puertas-Mejia, M. A. M. A., & Mejia-Giraldo, J. C. J. C. (2020). Comparison of the photoprotective effect between hydrolyzed and aglycones flavonoids as sunscreen: a systematic review. Journal of Applied Pharmaceutical Science, 10, 116–123. https://doi.org/10.7324/japs.2020.101016

    Article  CAS  Google Scholar 

  29. Harbaum, B., Hubbermann, E. M. E., Wolff, C., Herges, R., Zhu, Z., & Schwarz, K. (2007). Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD. Journal of Agriculture and Food Chemistry, 55, 8251–8260.

    Article  CAS  Google Scholar 

  30. Velasco, M. V. R., Sarruf, F. D., Salgado-Santos, I. M. N., Haroutiounian-Filho, C. A., Kaneko, T. M., & Baby, A. R. (2008). Broad spectrum bioactive sunscreens. International Journal of Pharmaceutics, 363, 50–57. https://doi.org/10.1016/j.ijpharm.2008.06.031

    Article  PubMed  CAS  Google Scholar 

  31. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Science and Technology, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  32. Puertas-Mejía, M. A. M. A., Gutierrez-villegas, M. I. M. I., Mejía-giraldo, J. C. J. C., Winkler, R., & Rojano, B. (2018). In vitro UV absorption properties and radical scavenging capacity of Morella parvifolia (Benth.) Parra-Os. extracts. Brazilian Journal of Pharmaceutical Sciences, 54, 1–8. https://doi.org/10.1590/s2175-97902018000317498

    Article  CAS  Google Scholar 

  33. Mejía-giraldo, J. C., Gallardo, C., & Puertas-mejía, M. A. (2015). In vitro photoprotection and antioxidant capacity of Sphagnum meridense extracts, a novel source of natural sunscreen from the mountains of Colombia. De Gruyter, 87, 961–970. https://doi.org/10.1515/pac-2015-0302

    Article  CAS  Google Scholar 

  34. Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant activity of apple peels. Journal of Agriculture and Food Chemistry, 51, 609–614. https://doi.org/10.1021/jf020782a

    Article  CAS  Google Scholar 

  35. Mejía-Giraldo, J. C., Henao-Zuluaga, K., Gallardo, C., Atehortúa, L., & Puertas-Mejía, M. A. (2016). Novel in vitro antioxidant and photoprotection capacity of plants from high altitude ecosystems of Colombia. Photochemistry and Photobiology, 92, 150–157. https://doi.org/10.1111/php.12543

    Article  PubMed  CAS  Google Scholar 

  36. Puertas-Mejía, M. A. M. A., Rincón-Valencia, S., & Mejía-giraldo, J. C. J. C. (2015). Screening of UVA/UVB absorption and in vitro antioxidant capacity of Bejaria aestuans, Cavendishia pubescens and Cavendishia bracteata leaf extracts. Research Journal of Medicinal Plant, 9, 435–441. https://doi.org/10.3923/rjmp.2015

    Article  Google Scholar 

  37. International Organization for Stardatization, (2012). ISO 24443:2012. Determination of sunscreen UVA photoprotection in vitro. 31

  38. Moyal, D., Alard, V., Bertin, C., Boyer, F., Brown, M. W., Kolbe, L., Matts, P., & Pissavini, M. (2013). The revised COLIPA in vitro UVA method. International Journal of Cosmetic Science, 35, 35–40. https://doi.org/10.1111/j.1468-2494.2012.00748.x

    Article  PubMed  CAS  Google Scholar 

  39. Jarzycka, A., Lewińska, A., Gancarz, R., & Wilk, K. A. (2013). Assessment of extracts of Helichrysum arenarium, Crataegus monogyna, Sambucus nigra in photoprotective UVA and UVB; photostability in cosmetic emulsions. Journal of Photochemistry and Photobiology B: Biology, 128, 50–57. https://doi.org/10.1016/j.jphotobiol.2013.07.029

    Article  CAS  Google Scholar 

  40. Choquenet, B., Couteau, C., Paparis, E., & Coiffard, L. J. M. (2008). Quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. Journal of Natural Products, 71, 1117–1118. https://doi.org/10.1021/np7007297

    Article  PubMed  CAS  Google Scholar 

  41. Vicentini, F. T. M. C., Georgetti, S. R., Jabor, J. R., Caris, J. A., Bentley, M. V. L. B., & Fonseca, M. J. V. (2007). Photostability of quercetin under exposure to UV irradiation. Latin American Journal of Pharmacy, 26, 119–124.

    CAS  Google Scholar 

  42. Hojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International Journal of Pharmaceutics, 408, 27–38. https://doi.org/10.1016/j.ijpharm.2011.01.040

    Article  PubMed  CAS  Google Scholar 

  43. Marque, C., Pensé-Lhéritier, A.-M., & Bacle, I. (2022). Sensory methods for cosmetics evaluation. Nonfood Sesory Practices. https://doi.org/10.1016/B978-0-12-821939-3.00012-9

    Article  Google Scholar 

  44. Mérat, E., Roso, A., Dumaine, M., & Sigurani, S. (2022). Sensory evaluation of cosmetic functional ingredients. Nonfood Sesory Practices. https://doi.org/10.1016/B978-0-12-821939-3.00018-X

    Article  Google Scholar 

  45. Mejía-Giraldo, J. C., Winkler, R., Gallardo, C., Sánchez-Zapata, A. M., & Puertas-Mejía, M. A. (2016). Photoprotective Potential of Baccharis antioquensis (Asteraceae) as natural sunscreen. Photochemistry and Photobiology, 92, 742–752. https://doi.org/10.1111/php.12619

    Article  PubMed  CAS  Google Scholar 

  46. Articles, C., Katiyar, S. K., Perez, A., & Mukhtar, H. (2000). Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA. Clinical Cancer Research, 6, 3864–3869.

    Google Scholar 

  47. Anitha, T. (2012). Medicinal plants used in skin protection. Asian Journal of Pharmaceutical and Clinical Research, 5, 3–6.

    Google Scholar 

  48. Balakrishnan, K. P., Narayanaswamy, N., Itc, R., Industrial, P., & Phase, A. (2011). Botanicals as sunscreens: their role in the prevention of photoaging and skin cancer. International Journal of Cosmetic Science, 1, 13–16.

    Google Scholar 

  49. Kajdžanoska, M., Petreska, J., & Stefova, M. (2011). Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. Journal of Agriculture and Food Chemistry, 59, 5272–5278. https://doi.org/10.1021/jf2007826

    Article  CAS  Google Scholar 

  50. Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography A, 1054, 95–111. https://doi.org/10.1016/j.chroma.2004.08.059

    Article  PubMed  CAS  Google Scholar 

  51. COLIPA. (2011). Method for In Vitro Determination of UVA Protection (European Cosmetic, Toiletry and Perfumery Association). In vitro method for the determination of the UVA protection factor and “critical wavelength” values of sunscreen products, guidelines

  52. Department of Health and Human Service. Food and Drug Administration. (2011). Over-the-counter sunscreen drug products; required labeling based on effectiveness testing. CFR 21 part 201.327. https://doi.org/10.1017/CBO9781107415324.004

  53. Boots the Chemist Ltd. (2008). The revised guidelines to the practical measurement of UVA/UVB ratios according to the Boots star rating system. The Boots Co., PLC.

    Google Scholar 

  54. Padera, F. (2011). Sunscreen testing according to COLIPA 2011/FDA final rule 2011 using UV/Vis LAMBDA spectrophotometers (pp. 1–9). PerkinElmer Inc.

    Google Scholar 

  55. COLIPA. (2011). In vitro method for the determination of the UVA protection factor and “critical wavelength” values of sunscreen products: guideline. European Cosmetic, Toiletry and Perfumery Association

  56. Ma, C., Whitaker, B. D., & Kennelly, E. J. (2010). New 5-O-caffeoylquinic acid derivatives in fruit of the wild eggplant relative Solanum viarum. Journal of Agriculture and Food Chemistry, 58, 11036–11042. https://doi.org/10.1021/jf102963f

    Article  CAS  Google Scholar 

  57. Rohde, A., Morreel, K., Ralph, J., Goeminne, G., Hostyn, V., De Rycke, R., Kushnir, S., Van Doorsselaere, J., Joseleau, J.-P., Vuylsteke, M., Van Driessche, G., Van Beeumen, J., Messens, E., & Boerjan, W. (2004). Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. The Plant Cell, 16, 2749–2771.

    Article  CAS  Google Scholar 

  58. Cuyckens, F., & Claeys, M. (2004). Mass spectrometry in the structural analysis of flavonoids. Journal of Mass Spectrometry, 39, 1–15. https://doi.org/10.1002/jms.585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

JC Mejía-Giraldo acknowledges doctoral fellowship granted by Colciencias (National Research Council). This work was supported by CODI-University of Antioquia (Project no. IN632CE) and the grant Conacyt-DFG 2016/277850.

Funding

This study was funded by CODI-Universidad de Antioquia (Proyecto Nº IN632CE) and the grant Conacyt-DFG 2016/277850. Juan C. Mejía-Giraldo received a doctoral scholarship by Colciencias (National Research Council).

Author information

Authors and Affiliations

Authors

Contributions

JCM-G conceived and performed the experiments, analyzed the data, and drafted the paper. RW revised and edited the paper. MAP-M supervised the experiments, revised the paper, and gave the final approval of the manuscript and funding acquisition. All the authors read and approved the manuscript as submitted.

Corresponding author

Correspondence to Juan C. Mejía-Giraldo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest among them or with the parent institution.

Data availability

Not applicable.

Code availability

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejía-Giraldo, J.C., Winkler, R. & Puertas-Mejía, M. Novel UV filters from Pentacalia pulchella extracts with photoprotective properties and antioxidant activity. Photochem Photobiol Sci 20, 1585–1597 (2021). https://doi.org/10.1007/s43630-021-00120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00120-z

Keywords

Navigation