Skip to main content

Advertisement

Log in

Few X-ray and PUVA treatments accelerate photocarcinogenesis in hairless mice

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

PUVA is a treatment that combines oral methoxypsoralen (8-MOP) with ultraviolet radiation A (UVA). It is used for severe psoriasis and the early stages of T-cell lymphoma. X-rays are an effective treatment for skin cancers. Both treatments are in higher doses used to treat skin malignancies and simultaneously increase the risk of keratinocyte cancer. The main objective of this study was to test whether a few PUVA or X-ray treatments could delay the development of ultraviolet radiation (UVR)-induced skin tumors in a well-established hairless mouse model. Three groups of immunocompetent mice (total, N = 75) were included in the study. All groups were UVR-exposed during the study period. In addition, one group was treated with PUVA and another group was treated with X-rays at days 45, 52, 90 and 97. A control group was treated with UVR only. We recorded when the first, second and third skin tumors were induced in each mouse. Skin tumors developed significantly earlier in both the PUVA and X-ray groups (median, 188 days) than in the control mice (median, 215 days; p < 0.001). Therefore, a few X-ray and PUVA treatments both significantly accelerated the development of skin tumors in hairless mice, compared to UVR controls. Neither treatment showed a delay of UVR-induced skin tumors and caution should be exercised before applying these treatments to sun-damaged skin.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

Code availability

Not applicable.

References

  1. Lindelöf, B., & Eklund, G. (1986). Incidence of malignant skin tumors in 14,140 patients after Grenz-ray treatment for benign skin disorders. Archives of Dermatology, 122(12), 1391–1395. https://doi.org/10.1001/archderm.1986.01660240055015

    Article  PubMed  Google Scholar 

  2. Karagas, M. R., et al. (1996). Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. For The Skin Cancer Prevention Study Group. Journal of the National Cancer Institute, 88(24), 1848–1853. https://doi.org/10.1093/jnci/88.24.1848

    Article  CAS  PubMed  Google Scholar 

  3. Wolfe, C. M., Green, W. H., Hatfield, H. K., Shakar, T. J., Baniahmad, O., & Cognetta, A. B. (2012). Multiple secondary cutaneous tumours following electron beam radiotherapy for cutaneous malignancies of the scalp. Australasian Journal of Dermatology, 53(3), 233–238. https://doi.org/10.1111/j.1440-0960.2012.00917.x

    Article  Google Scholar 

  4. Hulyalkar, R., Rakkhit, T., & Garcia-Zuazaga, J. (2011). The role of radiation therapy in the management of skin cancers. Dermatologic Clinics, 29(2), 287–296. https://doi.org/10.1016/j.det.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Warner, J. A., & Cruz, P. D. J. (2008). Grenz ray therapy in the new millennium: Still a valid treatment option? Dermatitis: Contact Atopic, Occupational Drug, 19(2), 73–80.

    Article  Google Scholar 

  6. Halpern, J. N. (1997). Radiation therapy in skin cancer. A historical perspective and current applications. Dermatologic Surgery, 23(11), 1089–1093. https://doi.org/10.1111/j.1524-4725.1997.tb00454.x

    Article  CAS  PubMed  Google Scholar 

  7. King, B. J., Lester, S. C., Tolkachjov, S. N., Davis, M. D. P., Gibson, L. E., & Martenson, J. A. (2020). Skin-directed radiation therapy for cutaneous lymphoma: The Mayo Clinic experience. Journal of the American Academy of Dermatology, 82(3), 634–641. https://doi.org/10.1016/j.jaad.2019.07.040

    Article  PubMed  Google Scholar 

  8. Beitner, H., Nakatani, T., & Lindelöf, B. (1990). An ultrastructural study of human epidermal Langerhans cells irradiated with Grenz rays and ultraviolet A. Photodermatology, Photoimmunology and Photomedicine, 7(6), 266–268 (Online). http://europepmc.org/abstract/MED/2103134.

  9. Goldschmidt, H., Breneman, J. C., & Breneman, D. L. (1994). Ionizing radiation therapy in dermatology. Journal of the American Academy of Dermatology, 30(2 Pt 1), 156–157. https://doi.org/10.1016/s0190-9622(94)70014-1

    Article  Google Scholar 

  10. Groh, V., Meyer, J. C., Panizzon, R., & Zortea-Caflisch, C. (1984). Soft X-irradiation influences the integrity of Langerhans cells. A histochemical and immunohistological study. Dermatologica, 168(2), 53–60. https://doi.org/10.1159/000249668

    Article  CAS  PubMed  Google Scholar 

  11. Lindelöf, B., Lidén, S., & Ros, A. M. (1984). Effect of Grenz rays on Langerhans’ cells in human epidermis. Acta Dermato-Venereologica, 64(5), 436–438 (Online). http://europepmc.org/abstract/MED/6208727.

  12. Lerche, C. M., Philipsen, P. A., & Wulf, H. C. (2013). X-rays and photocarcinogenesis in hairless mice. Archives of Dermatological Research, 305(6), 529–533. https://doi.org/10.1007/s00403-013-1344-7

    Article  CAS  PubMed  Google Scholar 

  13. Parrish, J. A., Fitzpatrick, T. B., Tanenbaum, L., & Pathak, M. A. (1974). Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. New England Journal of Medicine, 291(23), 1207–1211. https://doi.org/10.1056/NEJM197412052912301

    Article  CAS  Google Scholar 

  14. Stern, R. S., Thibodeau, L. A., Parrish, J. A., & Fitzpatrick, T. B. (1979). Skin cancer after PUVA treatment for psoriasis. The New England Journal of Medicine, 301(10), 555.

    CAS  PubMed  Google Scholar 

  15. Maiorino, A., De Simone, C., Perino, F., Caldarola, G., & Peris, K. (2016). Melanoma and non-melanoma skin cancer in psoriatic patients treated with high-dose phototherapy. The Journal of Dermatological Treatment, 6634(5), 443–447. https://doi.org/10.3109/09546634.2015.1133882

    Article  Google Scholar 

  16. Chuang, T. Y., Heinrich, L. A., Schultz, M. D., Reizner, G. T., Kumm, R. C., & Cripps, D. J. (1992). PUVA and skin cancer. A historical cohort study on 492 patients. Journal of the American Academy of Dermatology, 26(2 Pt 1), 173–177. https://doi.org/10.1016/0190-9622(92)70021-7

    Article  CAS  PubMed  Google Scholar 

  17. Lindelöf, B., et al. (1991). PUVA and cancer: A large-scale epidemiological study. Lancet (London, England), 338(8759), 91–93. https://doi.org/10.1016/0140-6736(91)90083-2

    Article  Google Scholar 

  18. Ling, T. C., et al. (2016). British Association of Dermatologists and British Photodermatology Group guidelines for the safe and effective use of psoralen-ultraviolet A therapy 2015. British Journal of Dermatology, 174(1), 24–55. https://doi.org/10.1111/bjd.14317

    Article  CAS  Google Scholar 

  19. Hönigsmann, H., Brenner, W., Rauschmeier, W., Konrad, K., & Wolff, K. (1981). Photochemotherapy for T cell lymphoma cutaneous. A follow-up study. Journal of the American Academy of Dermatology, 15(16), 1–39 (Online). http://ac.els-cdn.com/S0190962284700302/1-s2.0-S0190962284700302-main.pdf?_tid=efeecf46-3231-11e7-84f5-00000aacb35f&acdnat=1494057751_ac1c7831100f15c254d1148a36212ee3.

  20. Wackernagel, A., Hofer, A., Legat, F., Kerl, H., & Wolf, P. (2006). Efficacy of 8-methoxypsoralen vs. 5-methoxypsoralen plus ultraviolet a therapy in patients with mycosis fungoides. British Journal of Dermatology, 154(3), 519–523. https://doi.org/10.1111/j.1365-2133.2005.07008.x

    Article  CAS  Google Scholar 

  21. Togsverd-Bo, K., Lerche, C. M., Poulsen, T., Wulf, H. C., & Hædersdal, M. (2010). Photodynamic therapy with topical methyl- and hexylaminolevulinate for prophylaxis and treatment of UV-induced SCC in hairless mice. Experimental Dermatology. https://doi.org/10.1111/j.1600-0625.2009.01035.x

    Article  PubMed  Google Scholar 

  22. Wulf, H. C., Al-chaer, R. N., Glud, M., Philipsen, P. A., & Lerche, C. M. A skin cancer prophylaxis study in hairless mice using methylene blue, riboflavin , and methyl aminolevulinate as photosensitizing agents in photodynamic therapy, pp. 1–12.

  23. Togsverd-Bo, K., Omland, S. H., Wulf, H. C., Sørensen, S. S., & Haedersdal, M. (2015). Primary prevention of skin dysplasia in renal transplant recipients with photodynamic therapy: A randomized controlled trial. American Journal of Transplantation, 15(11), 2986–2990. https://doi.org/10.1111/ajt.13358

    Article  CAS  PubMed  Google Scholar 

  24. Wulf, H. C. (1996). Dosimetry of UV radiation. Skin Research and Technology, 2(3), 101–102. https://doi.org/10.1111/j.1600-0846.1996.tb00069.x

    Article  CAS  PubMed  Google Scholar 

  25. Lerche, C. M., Sepehri, M., Serup, J., Poulsen, T., & Wulf, H. C. (2015). Black tattoos protect against UVR-induced skin cancer in mice. Photodermatology, Photoimmunology and Photomedicine, 31(5), 261–268. https://doi.org/10.1111/phpp.12181

    Article  CAS  PubMed  Google Scholar 

  26. Lerche, C. M., Philipsen, P. A., & Wulf, H. C. (2017). UVR: Sun, lamps, pigmentation and vitamin D. Photochemical and Photobiological Sciences, 16(3), 291–301. https://doi.org/10.1039/c6pp00277c

    Article  CAS  PubMed  Google Scholar 

  27. Lerche, C. M., Togsverd-Bo, K., Philipsen, P. A., & Wulf, H. C. (2017). Impact of UVR exposure pattern on squamous cell carcinoma—A dose-delivery and dose-response study in pigmented hairless mice. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18122738

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sulciner, M. L., et al. (2018). Resolvins suppress tumor growth and enhance cancer therapy. Journal of Experimental Medicine, 215(1), 115–140. https://doi.org/10.1084/jem.20170681

    Article  CAS  Google Scholar 

  29. Vieyra-Garcia, P. A., & Wolf, P. (2020). A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacology and Therapeutics, 222, 107784. https://doi.org/10.1016/j.pharmthera.2020.107784

    Article  CAS  PubMed  Google Scholar 

  30. Rossman, T. G., Uddin, A. N., Burns, F. J., & Bosland, M. C. (2001). Arsenite is a cocarcinogen with solar ultraviolet radiation for mouse skin: An animal model for arsenic carcinogenesis. Toxicology and Applied Pharmacology, 176(1), 64–71. https://doi.org/10.1006/taap.2001.9277

    Article  CAS  PubMed  Google Scholar 

  31. Edwards, E. K. J., & Edwards, E. K. S. (1990). Grenz ray therapy. International Journal of Dermatology, 29(1), 17–18. https://doi.org/10.1111/j.1365-4362.1990.tb03747.x

    Article  PubMed  Google Scholar 

  32. Frentz, G. Grenz ray-induced nonmelanoma skin cancer, no. Table II, pp. 475–478.

Download references

Acknowledgements

The authors extend their gratitude to the nurses from the Department of Dermatology D41 for helping with the X-ray treatments and M.Sc. E.E. Jakob Heydenreich for recording the spectrum of the UVA source. This work was executed as a part of the Danish Research Center for Skin Cancer and the Skin Cancer Innovation Clinical Academic Group (SCIN CAG), Greater Copenhagen Health Science Partners (GCHSP).

Funding

The research was supported by Copenhagen University Hospital, Bispebjerg and Kgl. Hofbundtmager Aage Bangs Foundation. C.M.L is supported by an unrestricted grant from the Lundbeck Foundation (R307-2018-3318).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HCW, PAP, and CML; methodology: HCW, PAP, and CML; validation: MG; formal analysis: PAP, CML, and MG; investigation: CML; resources: HCW and CML; data curation: RNA; writing—original draft preparation: RNA and CML; writing—review and editing: HCW, RNA, MG, PAP, and CML; visualization: RNA and CML; supervision: HCW and CML; project administration: CML; funding acquisition: CML. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Catharina M. Lerche.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

All protocols were approved by the Danish Animal Experiments Inspectorate (permit number 2014-15-0201-00096) and our Institutional Animal Care and Use Committee.

Consent to participate

Not applicable.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerche, C.M., Al-Chaer, R.N., Glud, M. et al. Few X-ray and PUVA treatments accelerate photocarcinogenesis in hairless mice. Photochem Photobiol Sci 20, 1299–1307 (2021). https://doi.org/10.1007/s43630-021-00105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00105-y

Keywords

Navigation