Skip to main content
Log in

Low-cost photo-switches based on stilbene-appended Zn(II)–terpyridine complexes

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report herein the synthesis, characterization, photophysics, and photo-isomerization behaviors of three Zn(II)–terpyridine complexes of the type [Zn(tpy-pvp-X)2]2+ (X = H, Me, and NO2) covalently tethered with stilbene moiety. The complexes exhibit absorption bands stretching up to the edge of the visible domain due to ligand → ligand charge transfer (LLCT) transitions and strong emission at room temperature in the visible due to radiative deactivation of 3LLCT state having lifetime within 1.0–3.0 ns. The stilbene motifs in the complexes undergo trans to cis isomerization upon irradiating with UV and visible light accompanied by significant alteration of their absorption, emission, and 1H NMR spectral profiles. Apart from the variation of electron donating and electron withdrawing substituent (X), the isomerization studies were also carried out in three different solvents (DCM, MeCN, and DMSO) to further tune their kinetic and thermodynamic parameters. The rate, rate constant and quantum yield of isomerization were estimated in all the solvents. The reverse process (cis to trans) also occurs very slowly on keeping but could be accelerated upon heating. Trans to cis photoisomerization leads to quenching of emission in case of 1 and 2, whereas backward thermal cis to trans conversion leads to restoration of emission. By contrast, for the nitro-derivative (3) forward process induces emission enhancement, while backward process gives rise to emission quenching. In essence, “on–off” and “off–on” emission switching is feasible for 1 and 2, whereas “off–on” and “on–off” emission switching occurs in case of 3. Emission spectral responses upon successive action of photonic and thermal input lead to the fabrication of INHIBIT and IMPLICATION logic gates. DFT and TD-DFT computational investigations were also undertaken to visualize their electronic structures, correct assignment of the spectral bands, and mode of isomerization process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. McConnell, A. J., Wood, C. S., Neelakandan, P. P., & Nitschke, J. R. (2015). Stimuli-responsive metal-ligand assemblies. Chemical Reviews, 115, 7729–7793.

    Article  CAS  PubMed  Google Scholar 

  2. Kobatake, S., Takami, S., Muto, H., Ishikawa, T., & Irie, M. (2007). Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature, 446, 778–781.

    Article  CAS  PubMed  Google Scholar 

  3. Kondo, M., Uchikawa, M., Zhang, W. W., Namiki, K., Kume, S., Murata, M., Kobayashi, Y., & Nishihara, H. (2007). Protonation-induced cyclocondensation of 1-aryl ethynylanthraquinones: Expanding the π conjugation. Angewandte Chemie International Edition, 46, 6271–6274.

    Article  CAS  PubMed  Google Scholar 

  4. Li, Q. (Ed.). (2013). Intelligent stimuli-responsive materials. Wiley.

    Google Scholar 

  5. Rommel, S. A., Sorsche, D. U., Fleischmann, M., & Rau, S. (2017). Optical sensing of anions via supramolecular recognition with biimidazole complexes. Chemistry–A European Journal, 23, 18101–18119.

    Article  CAS  PubMed  Google Scholar 

  6. Kume, S., & Nishihara, H. (2008). Photochrome-coupled Metal Complexes: Molecular Processing of Photon Stimuli. Dalton Transactions, 25, 3260–3271.

    Article  CAS  Google Scholar 

  7. Valeur, B. (2002). Molecular fluorescence: Principles and applications. Wiley.

    Google Scholar 

  8. Prodi, L., Bolletta, F., & Montalti, M. (2000). Luminescent chemosensors for transition metal ions. Coordination Chemistry Reviews, 205, 59–83.

    Article  CAS  Google Scholar 

  9. Mullen, K., & Scherf, U. (2006). Organic light emitting devices-synthesis, properties and applications. Wiley.

    Google Scholar 

  10. Kim, H. N., Ren, W. X., Kim, J. S., & Yoon, J. (2012). Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews, 41, 3210–3244.

    Article  CAS  PubMed  Google Scholar 

  11. Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100, 1685–1716.

    Article  CAS  PubMed  Google Scholar 

  12. Feringa, B. L., van Delden, R. A., & ter Wiel, M. K. J. (2001). Chiroptical molecular switches. Wiley.

    Book  Google Scholar 

  13. Tian, H., & Yang, S. (2004). Recent progresses on diarylethene based photochromic switches. Chemical Society Reviews, 33, 85–97.

    Article  CAS  PubMed  Google Scholar 

  14. Kawata, S., & Kawata, Y. (2000). Three-dimensional optical data storage using photochromic materials. Chemical Reviews, 100, 1777–1788.

    Article  CAS  PubMed  Google Scholar 

  15. Rau, H. (1990). In Dürr, H., Laurent, H. B., Photochromism: Molecules and systems, 1st edn. Elsevier, pp 165−192.

  16. Ichimura, K., Oh, S. K., & Nakagawa, M. (2000). Light-driven motion of liquids on a photoresponsive surface. Science, 288, 1624–1626.

    Article  CAS  PubMed  Google Scholar 

  17. Sakamoto, R., Kume, S., & Nishihara, H. (2008). Visible-light photochromism of triarylamine- or ferrocene-bound diethynylethenes that switches electronic communication between redox sites and luminescence. Chemistry–A European Journal, 14, 6978–6986.

    Article  CAS  PubMed  Google Scholar 

  18. Waldeck, D. H. (1991). Photoisomerization dynamics of stilbenes. Chemical Reviews, 91, 415–436.

    Article  CAS  Google Scholar 

  19. Bossert, J., & Daniel, C. (2006). Trans-cis photoisomerization of the styrylpyridine ligand in [Re(CO)3(2,2’-bipyridine)(t-4-styrylpyridine)]+: role of the metal-to-ligand charge transfer excited states. Chemistry–A European Journal, 12, 4835–4843.

    Article  CAS  PubMed  Google Scholar 

  20. Dattelbaum, D. M., Itokazu, M. K., Iha, N. Y. M., & Meyer, T. J. (2003). Mechanism of metal-to ligand charge transfer sensitization of olefin trans-to-cis isomerization in the fac-[ReI(phen)(CO)3(1,2-bpe)]+ cation. Journal of Physical Chemistry A, 107, 4092–4095.

    Article  CAS  Google Scholar 

  21. Sun, S. S., & Lees, A. J. (2002). Synthesis, photophysical properties, and photoinduced luminescence switching of trinuclear diimine rhenium(I) tricarbonyl complexes linked by an isomerizable stilbene-like ligand. Organometallics, 21, 39–49.

    Article  CAS  Google Scholar 

  22. Yam, V.W.-W., Yang, Y., Zhang, J., Chu, B.W.-K., & Zhu, N. (2001). Synthesis, characterization, and photoisomerization studies of azo- and stilbene-containing surfactant rhenium(I) complexes. Organometallics, 20, 4911–4918.

    Article  CAS  Google Scholar 

  23. Ko, C.-C., & Yam, V.W.-W. (2018). Coordination compounds with photochromic ligands: Ready tunability and visible light-sensitized photochromism. Accounts of Chemical Research, 51, 149–159.

    Article  CAS  PubMed  Google Scholar 

  24. Kurihara, M., & Nishihara, H. (2002). Azo- and quinone-conjugated redox complexes—photo- and proton-coupled intramolecular reactions based on d-π interaction. Coordination Chemistry Reviews, 226, 125–135.

    Article  CAS  Google Scholar 

  25. Nishihara, H. (2004). Multi-mode molecular switching properties and functions of azo-conjugated metal complexes. Bulletin of the Chemical Society of Japan, 77, 407–428.

    Article  CAS  Google Scholar 

  26. Nishihara, H. (2007). In: Y. F. Kodansha, Ed. Inorganic Photochromism. Springer, pp 239−257.

  27. Kume, S., & Nishihara, H. (2006). Metal-based photoswitches derived from photoisomerization. Structural Bonding (Berlin, Ger.), 123, 79–112.

    Article  CAS  Google Scholar 

  28. Ko, C.-C., & Yam, V.W.-W. (2010). Transition metal complexes with photochromic ligands−photosensitization and photoswitchable properties. Journal of Materials Chemistry, 20, 2063–2070.

    Article  CAS  Google Scholar 

  29. Ko, C.-C., Wu, L.-X., Wong, K.M.-C., Zhu, N., & Yam, V.W.- W. . (2004). Synthesis, characterization and photochromic studies of spirooxazine- containing 2,2′-bipyridine ligands and their rhenium(I) tricarbonyl complexes. Chemistry A-European Journal., 10, 766–776.

    Article  CAS  PubMed  Google Scholar 

  30. Pal, P., Mukherjee, S., Maity, D., & Baitalik, S. (2018). Synthesis, structural characterization, and luminescence switching of diarylethene-conjugated Ru(II)-terpyridine complexes by trans-cis photoisomerization: Experimental and DFT/TD-DFT investigation. Inorganic Chemistry, 57, 5743–5753.

    Article  CAS  PubMed  Google Scholar 

  31. Pal, P., Mukherjee, S., Maity, D., & Baitalik, S. (2018). Synthesis, photophysics, and switchable luminescence properties of a new class of ruthenium(II)−terpyridine complexes containing photoisomerizable styrylbenzene units. ACS Omega, 3, 14526–14537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pal, P., Ganguly, T., Maity, D., & Baitalik, S. (2020). Experimental and theoretical exploration of photophysics and trans-cis photoisomerization of styrylbenzene conjugated terpyridine complexes of Ru(II): strong effect of deprotonation from second coordination sphere. Journal of Photochemistry and Photobiology A, 392, 112409.

    Article  CAS  Google Scholar 

  33. Pal, P., Ganguly, T., Sahoo, A., & Baitalik, S. (2021). Emission switching in the near-infrared by reversible trans−cis photoisomerization of styrylbenzene-conjugated osmium terpyridine complexes. Inorganic Chemistry, 60, 4869–4882.

    Article  CAS  PubMed  Google Scholar 

  34. Constable, E. C. (2007). 2,2′:6′,20′′-Terpyridines: From chemical obscurity to common supramolecular motifs. Chemical Society Reviews, 33, 246–253.

    Article  Google Scholar 

  35. Hofmeier, H., & Schubert, U. S. (2004). Recent developments in the supramolecular chemistry of terpyridine-metal complexes. Chemical Society Reviews, 33, 373–399.

    Article  CAS  PubMed  Google Scholar 

  36. Baranof, E., Collin, J. P., Flamigni, L., & Sauvage, J.-P. (2004). From ruthenium(ii) to iridium(iii): 15 years of triads based on bis-terpyridine complexes. Chemical Society Reviews, 33, 147.

    Article  CAS  Google Scholar 

  37. Wang, X., Guerzo, A., Baitalik, S., Simon, G., Shaw, G. B., Chen, L., & Schmehl, R. H. (2006). The influence of bridging ligand electronic structure on the photophysical properties of noble metal diimine and triimine light harvesting systems. Photosynthesis Research, 87, 83–103.

    Article  CAS  PubMed  Google Scholar 

  38. Breivogel, A., Kreitner, C., & Heinze, K. (2014). Redox and photochemistry of bis(terpyridine) ruthenium(II) amino acids and their amide conjugates-from understanding to applications. European Journal of Inorganic Chemistry, 2014, 5468–5490.

    Article  CAS  Google Scholar 

  39. Harriman, A., & Ziessel, R. (1996). Making photoactive, molecular-scale wires. Chemical Communications, 15, 1707–1716.

    Article  Google Scholar 

  40. Medlycott, E. A., & Hanan, G. S. (2006). Synthesis and properties of mono- and oligo-nuclear Ru(II) complexes of tridentate ligands: The quest for long-lived excited states at room temperature. Coordination Chemistry Reviews, 250, 1763.

    Article  CAS  Google Scholar 

  41. Medlycott, E. A., & Hanan, G. S. (2005). Designing tridentate ligands for ruthenium(ii) complexes with prolonged room temperature luminescence lifetimes. Chemical Society Reviews, 34, 133.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, X., Zhou, Q., Cheng, Y., Geng, Y., Ma, D., Xie, Z., & Wang, L. (2007). Synthesis, structure and luminescence properties of zinc(II) complexes with terpyridine derivatives as ligands. Journal of Luminescence, 126, 81–90.

    Article  CAS  Google Scholar 

  43. Tessore, F., Roberto, D., Ugo, R., & Pizzotti, M. (2005). Terpyridine Zn(II), Ru(III), and Ir(III) complexes: The relevant role of the nature of the metal ion and of the ancillary ligands on the second-order nonlinear response of terpyridines carrying electron donor or electron acceptor groups. Inorganic Chemistry, 44, 8967–8978.

    Article  CAS  PubMed  Google Scholar 

  44. Tsukamoto, T., Takada, K., Sakamoto, R., Matsuoka, R., Toyoda, R., Maeda, H., Yagi, T., Nishikawa, M., Shinjo, N., Amano, S., Iokawa, T., Ishibashi, N., Oi, T., Kanayama, K., Kinugawa, R., Koda, Y., Komura, T., Nakajima, S., Fukuyama, R., & Nishihara, H. (2017). Coordination nanosheets based on terpyridine−zinc(II) complexes: As photoactive host materials. Journal of the American Chemical Society, 139, 5359–5366.

    Article  CAS  PubMed  Google Scholar 

  45. Tsukamoto, T., Aoki, R., Sakamoto, R., Toyoda, R., Shimada, M., Hattori, Y., Kitagawa, Y., Nishibori, E., Nakano, M., & Nishihara, H. (2017). Mechano-, thermo-, solvato-, and vapochromism in bis(acetato-k1O)[4’-(4-(diphenylamino)phenyl)]- 2,2’:6’,2’’-terpyridine-k3N, N’, N’’)zinc(II) and its polymer. Chemical Communications, 53, 9805–9808.

    Article  CAS  PubMed  Google Scholar 

  46. Amaral, R. C., Matos, L. S., Zanoni, K. P. S., & Iha, N. Y. M. (2018). Photoreversible molecular motion of stpyCN coordinated to fac-[Re(CO)3(NN)]+ complexes. Journal of Physical Chemistry A, 122, 6071–6080.

    Article  CAS  PubMed  Google Scholar 

  47. Polo, A. S., Itokazu, M. K., Frin, K. M., Patrocınio, A. O. T., & Iha, N. Y. M. (2006). Light driven trans-to-cis isomerization of stilbene-like ligands in fac-[Re(CO)3(NN)(trans-L)]+ and luminescence of their photoproducts. Coordination Chemistry Reviews, 250, 1669–1680.

    Article  CAS  Google Scholar 

  48. Faustino, L. A., Machado, A. E. H., & Patrocinio, A. O. T. (2018). Photochemistry of fac-[Re(CO)3(dcbH2)(trans-stpy)]+: New insights on the isomerization mechanism of coordinated stilbene-like ligands. Inorganic Chemistry, 57, 2933–2941.

    Article  CAS  PubMed  Google Scholar 

  49. Lin, J. L., Chen, C. W., Sun, S. S., & Lees, A. J. (2011). Photoswitching tetranuclear rhenium(I) tricarbonyl diimine complexes with a stilbene-like bridging ligand. Chemical Communication, 47, 6030–6032.

    Article  CAS  Google Scholar 

  50. Wrighton, M. S., Morse, D. L., & Pdungsap, L. (1975). Intraligand lowest excited states in tricarbonylhalobis(styrylpyridine)rhenium(I) complexes. Journal of the American Chemical Society, 97, 2073–2079.

    Article  CAS  Google Scholar 

  51. Yam, V. W. W., Lau, V. C. Y., & Wu, L. X. (1998). Synthesis, photophysical, photochemical and electrochemical properties of rhenium(I) diimine complexes with photoisomerizable pyridyl-azo, -ethenyl or -ethyl ligands. Journal of the Chemical Society, Dalton Transactions, 9, 1461–1468.

    Article  Google Scholar 

  52. Matos, L. S., Amaral, R. C., & Iha, N. Y. M. (2018). Visible photosensitization of trans-styrylpyridine coordinated to fac-[Re(CO)3(dcbH2)]+: New insights. Inorganic Chemistry, 57, 9316–9326.

    Article  CAS  PubMed  Google Scholar 

  53. Patrocinio, A. O. T., & Iha, N. Y. M. (2008). Photoswitches and luminescent rigidity sensors based on fac-[Re(CO)3(Me4phen)(L)]+. Inorganic Chemistry, 47, 10851–10857.

    Article  CAS  PubMed  Google Scholar 

  54. Vlcek, A. J., & Busby, M. (2006). Ultrafast ligand-to-ligand electron and energy transfer in the complexes fac-[ReI(L)(CO)3(bpy)]n+. Coordination Chemistry Reviews, 250, 1755–1762.

    Article  CAS  Google Scholar 

  55. Kayanuma, M., Daniel, C., Koppel, H., & Gindensperger, E. (2011). Photophysics of isomerizable Re(I) complexes: A theoretical analysis. Coordination Chemistry Reviews, 255, 2693–2703.

    Article  CAS  Google Scholar 

  56. Wenger, O. S., Henling, L. M., Winkler, J. R., Day, M. W., & Gray, H. B. (2004). Photoswitchable luminescence of rhenium(I) tricarbonyl diimines. Inorganic Chemistry, 43, 2043–2048.

    Article  CAS  PubMed  Google Scholar 

  57. Yutaka, T., Mori, I., Kurihara, M., Tamai, N., & Nishihara, H. (2003). Photochemical behavior of azobenzene-conjugated CoII, CoIII, and FeII bis(terpyridine) complexes. Inorganic Chemistry, 42, 6306–6313.

    Article  CAS  PubMed  Google Scholar 

  58. Hasegawa, Y., Takahashi, K., Kume, S., & Nishihara, H. (2011). Complete solid state photoisomerization of bis(dipyrazolylstyrylpyridine)iron(II) to change magnetic properties. Chemical Communications, 47, 6846–6848.

    Article  CAS  PubMed  Google Scholar 

  59. Mukherjee, S., Pal, P., Sahoo, A., & Baitalik, S. (2021). Photo-switchable iron-terpyridine complexes functionalized with styrylbenzene unit. Journal of Photochemistry and Photobiology A, 407, 113059.

    Article  CAS  Google Scholar 

  60. Zhang, Q., Tian, X., Hu, Z., Brommesson, C., Wu, J., Zhou, H., Li, S., Yang, J., Sun, Z., Tian, Y., & Uvdal, K. (2015). A series of Zn(II) terpyridine complexes with enhanced two-photon-excited fluorescence for in vitro and in vivo bioimaging. Journal of Materials Chemistry B, 3, 7213–7221.

    Article  CAS  PubMed  Google Scholar 

  61. Tang, Y., Kong, M., Tian, X., Wang, J., Xie, Q., Wang, A., Zhang, Q., Zhou, H., Wu, J., & Tian, Y. (2017). A series of terpyridine-based zinc(II) complexes assembled for third-order nonlinear optical responses in the near-infrared region and recognizing lipid membranes. Journal of Materials Chemistry B, 5, 6348–6355.

    Article  CAS  PubMed  Google Scholar 

  62. De Silva, A. P., Gunaratne, H. Q. N., & McCoy, C. P. (1993). A Molecular Photoionic AND Gate Based on Fluorescent Signaling. Nature, 364, 42–44.

    Article  Google Scholar 

  63. De Silva, A. P., Fox, D. P., Huxley, A. J. M., & Moody, T. S. (2000). Combining Luminescence, Coordination and Electron Transfer for Signaling Purposes. Coordination Chemistry Reviews, 205, 41–57.

    Article  Google Scholar 

  64. Katz, E. (2012). Molecular and supramolecular information processing: From molecular switches to logic system. Wiley.

    Book  Google Scholar 

  65. Guliyev, R., Ozturk, S., Kostereli, Z., & Akkaya, E. U. (2011). From Virtual to Physical: Integration of Chemical Logic Gates. Angewandte Chemie International Edition, 50, 9826–9831.

    Article  CAS  PubMed  Google Scholar 

  66. Karmakar, S., Mardanya, S., Das, S., & Baitalik, S. (2015). Efficient Deep-Blue Emittier and Molecular-Scale Memory Device Based on Dipyridyl-Phenylimidazole-Terpyridine Assembly. Journal of Physical Chemistry C, 119, 6793–6805.

    Article  CAS  Google Scholar 

  67. Gille, K., Knoll, H., & Quitzsch, K. (1999). Rate constants of the thermal cis-trans isomerization of azobenzene dyes in solvents, acetone/water mixtures, and in microheterogeneous surfactant solutions. International Journal of Chemical Kinetics, 31, 337–350.

    Article  CAS  Google Scholar 

  68. Yutaka, T., Mori, I., Kurihara, M., Mizutani, J., Kubo, K., Furusho, S., Matsumura, K., Tamai, N., & Nishihara, H. (2001). Synthesis, characterization, and photochemical properties of azobenzene-conjugated Ru(II) and Rh(III) bis(terpyridine) complexes. Inorganic Chemistry, 40, 4986–4995.

    Article  CAS  PubMed  Google Scholar 

  69. Otsuki, J., Suwa, K., Narutaki, K., Sinha, C., Yoshikawa, I., & Araki, K. (2005). Photochromism of 2-(phenylazo)imidazoles. The Journal of Physical Chemistry A, 109, 8064–8069.

    Article  CAS  PubMed  Google Scholar 

  70. Gauglitz, G., & Hubig, S. (1985). Chemical actinometry in the UV by azobenzene in concentrated-solution—a convenient method. Journal of Photochemistry, 30, 121–125.

    Article  CAS  Google Scholar 

  71. Ladanyi, V., Dvorak, P., Anshori, J. A., Vetrakova, Ľ, Wirz, J., & Heger, D. (2017). Azobenzene photoisomerization quantum yields in methanol redetermined. Photochemical & Photobiological Sciences, 16, 1757–1761.

    Article  CAS  Google Scholar 

  72. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09, revision A.02. Gaussian Inc.

    Google Scholar 

  73. Becke, A. D. (1993). Density functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652.

    Article  CAS  Google Scholar 

  74. Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.

    Article  CAS  Google Scholar 

  75. Mukherjee, S., Pal, P., Maity, D., & Baitalik, S. (2019). Photophysics and luminescence switching properties of a series of photochromic styrylbenzene-terpyridine conjugate: Experimental and DFT/TD-DFT investigation. Journal of Photochemistry and Photobiology A: Chemistry, 378, 94–104.

    Article  CAS  Google Scholar 

  76. Sinha, S., Mandal, S., & Gupta, P. (2015). Cyclometalated iridium(III) complexes of (aryl) ethenyl functionalized 2,2’ -bipyridine: Synthesis, photophysical properties and trans–cis isomerization behavior. RSC Advances, 5, 99529–99539.

    Article  CAS  Google Scholar 

  77. Nisic, F., Colombo, A., Dragonetti, C., Roberto, D., Valore, A., Malicka, J. M., Cocchi, M., Freemane, G. R., & Williams, J. A. G. (2014). Platinum(ii) complexes with cyclometallated 5-π-delocalized-donor-1,3-di(2-pyridyl)benzene ligands as efficient phosphors for NIR-OLEDs. Journal of Materials Chemistry C, 2, 1791–1800.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance received from SERB [Grant no. CRG/2020/001233] and CSIR [Grant no. 01(2945)/18/EMR-II], New Delhi, India are gratefully acknowledged. P. Pal and A. Sahoo acknowledge CSIR for their research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Baitalik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 23860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Pal, P., Sahoo, A. et al. Low-cost photo-switches based on stilbene-appended Zn(II)–terpyridine complexes. Photochem Photobiol Sci 20, 1125–1145 (2021). https://doi.org/10.1007/s43630-021-00085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00085-z

Keywords

Navigation