Skip to main content

Advertisement

Log in

Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet–visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

OH:

: Hydroxyl radicals

ANOVA:

: Analysis of variance

AO:

Acridine orange

ATCC:

American Type Culture Collection

AVOs:

Acidic vesicular organelles

CB:

Conduction band

C-TiO2 :

Carbon-doped titanium dioxide

DCF:

Dichlorofluorescein

DCFH-DA:

2,7-Dichlorofluorescein diacetate

DEPMPO:

5–(Diethoxyphosphoryl)–5–methyl–1–pyrroline–N–oxide

DIC:

Differential interference contrast

DMEM:

Dulbecco’s Modified Eagle’s Medium

EDTA:

Ethylenediaminetetraacetic acid

EPR:

Electron paramagnetic spectroscopy

FBS:

Fetal bovine serum

H2DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate

HeLa:

Henrietta Lacks (in the text referred to the human epithelial cervical cancer cells)

HRTM:

High-resolution transmission electron microscopy

LSCM:

Laser scanning confocal microscopy

MTT:

3–(4,5–Dimethylthiazol–2–yl)–2,5–diphenyl–2H–tetrazolium bromide

NPs:

Nanoparticles

PBS:

Phosphate-buffered saline

PDT:

Photodynamic therapy

PI:

Propidium iodide

PS:

Photosensitizer

RCF:

Relative centrifugal force

ROS:

Reactive oxygen species

SRB:

Sulforhodamine B

TBHB:

Tert-butyl hydroperoxide

TEM:

Transmission electron microscopy

TiO2 :

Titanium dioxide

UV:

Ultraviolet

UV–Vis:

Ultraviolet–visible light

VB:

Valence band

XRPD:

X-ray powder diffraction

References

  1. Abbasi, A. (2019). Chapter 7—TiO2-based nanocarriers for drug delivery. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Nanocarriers for Drug Delivery (pp. 205–248). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  2. Flak, D., Yate, L., Nowaczyk, G., & Jurga, S. (2017). Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery. Materials Science & Engineering, C: Materials for Biological Applications, 78, 1072–1085. https://doi.org/10.1016/j.msec.2017.04.107

    Article  CAS  Google Scholar 

  3. Nešić, M., Žakula, J., Korićanac, L., Stepić, M., Radoičić, M., Popović, I., Šaponjić, Z., & Petković, M. (2017). Light controlled metallo-drug delivery system based on the TiO2-nanoparticles and Ru-complex. Journal of Photochemistry and Photobiology A: Chemistry., 347, 55–66. https://doi.org/10.1016/j.jphotochem.2017.06.045

    Article  CAS  Google Scholar 

  4. Yurt, F., Ocakoglu, K., Er, O., Soylu, H. M., Ince, M., Avci, C. B., Kurt, C. C., Sarı, F. A., Colak, S. G., & Gunduz, C. (2019). Evaluation of photodynamic therapy and nuclear imaging potential of subphthalocyanine integrated TiO2 nanoparticles in mammary and cervical tumor cells. Journal of Porphyrins and Phthalocyanines, 23, 908–915. https://doi.org/10.1142/S1088424619500639

    Article  CAS  Google Scholar 

  5. Wei, B., Dong, F., Yang, W., Luo, C., Dong, Q., Zhou, Z., Yang, Z., & Sheng, L. (2020). Synthesis of carbon-dots@SiO2@TiO2 nanoplatform for photothermal imaging induced multimodal synergistic antitumor. Journal of Advanced Research., 23, 13–23. https://doi.org/10.1016/j.jare.2020.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakib, S., Pandey, R., Soleymani, L., & Zhitomirsky, I. (2020). Surface modification of TiO2 for photoelectrochemical DNA biosensors. Medical Devices & Sensors., 3, e10066. https://doi.org/10.1002/mds3.10066

    Article  Google Scholar 

  7. Wang, J., Xu, G., Zhang, X., Lv, J., Zhang, X., Zheng, Z., & Wu, Y. (2015). Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching. Dalton Transactions, 44, 7662–7672. https://doi.org/10.1039/C5DT00678C

    Article  CAS  PubMed  Google Scholar 

  8. Mavrič, T., Benčina, M., Imani, R., Junkar, I., Valant, M., Kralj-Iglič, V., & Iglič, A. (2018). Chapter three—Electrochemical biosensor based on tio2 nanomaterials for cancer diagnostics. In A. Iglič, M. Rappolt, & A. J. García-Sáez (Eds.), Advances in Biomembranes and Lipid Self-Assembly (pp. 63–105). London: Academic Press. https://doi.org/10.1016/bs.abl.2017.12.003

    Chapter  Google Scholar 

  9. Shah, Z., Nazir, S., Mazhar, K., Abbasi, R., & Samokhvalov, I. M. (2019). PEGylated doped- and undoped-TiO2 nanoparticles for photodynamic Therapy of cancers. Photodiagnosis and Photodynamic Therapy., 27, 173–183. https://doi.org/10.1016/j.pdpdt.2019.05.019

    Article  CAS  PubMed  Google Scholar 

  10. Matijević, M., Nakarada, Đ, Liang, X., Korićanac, L., Rajsiglova, L., Vannucci, L., Nešić, M., Vranješ, M., Mojović, M., Mi, L., Estrela-Lopis, I., Böttner, J., Šaponjić, Z., Petković, M., & Stepić, M. (2020). Biocompatibility of TiO2 prolate nanospheroids as a potential photosenzitizer in therapy of cancer. Journal of Nanoparticle Research, 22, 175. https://doi.org/10.1007/s11051-020-04899-3

    Article  CAS  Google Scholar 

  11. Chizenga, E. P., Chandran, R., & Abrahamse, H. (2019). Photodynamic therapy of cervical cancer by eradication of cervical cancer cells and cervical cancer stem cells. Oncotarget, 10, 4380–4396. https://doi.org/10.18632/oncotarget.27029

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muroya, T., Suehiro, Y., Umayahara, K., Akiya, T., Iwabuchi, H., Sakunaga, H., Sakamoto, M., Sugishita, T., & Tenjin, Y. (1996). Photodynamic therapy (PDT) for early cervical cancer, Gan to Kagaku ryoho. Cancer & Chemotherapy., 23, 47–56.

    CAS  Google Scholar 

  13. ESMO, Cervical Cancer Ranked in the Top Three Cancers Affecting Women Younger Than 45 Years, (n.d.). Retrieved March 10, 2021, from https://www.esmo.org/oncology-news/cervical-cancer-ranked-in-the-top-three-cancers-affecting-women-younger-than-45-years.

  14. Kubota, Y., Shuin, T., Kawasaki, C., Hosaka, M., Kitamura, H., Cai, R., Sakai, H., Hashimoto, K., & Fujishima, A. (1994). Photokilling of T-24 human bladder cancer cells with titanium dioxide. British Journal of Cancer, 70, 1107–1111. https://doi.org/10.1038/bjc.1994.456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, A.-P., & Sun, Y.-P. (2004). Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World Journal of Gastroenterology, 10, 3191–3193. https://doi.org/10.3748/wjg.v10.i21.3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai, R., Hashimoto, K., Kubota, Y., & Fujishima, A. (1992). Increment of photocatalytic killing of cancer cells using TiO2 with the aid of superoxide dismutase. Chemistry Letters, 21, 427–430. https://doi.org/10.1246/cl.1992.427

    Article  Google Scholar 

  17. Galata, E., Georgakopoulou, E. A., Kassalia, M.-E., Papadopoulou-Fermeli, N., & Pavlatou, E. A. (2019). Development of smart composites based on doped-tio2 nanoparticles with visible light anticancer properties. Materials (Basel). https://doi.org/10.3390/ma12162589

    Article  Google Scholar 

  18. Basavarajappa, P. S., Patil, S. B., Ganganagappa, N., Reddy, K. R., Raghu, A. V., & Reddy, Ch. V. (2020). Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy., 45, 7764–7778. https://doi.org/10.1016/j.ijhydene.2019.07.241

    Article  CAS  Google Scholar 

  19. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews., 25, 1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003

    Article  CAS  Google Scholar 

  20. Ansari, S. A., Khan, M. M., Ansari, M. O., & Cho, M. H. (2016). Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 40, 3000–3009. https://doi.org/10.1039/C5NJ03478G

    Article  CAS  Google Scholar 

  21. Li, Z., Mi, L., Wang, P.-N., & Chen, J.-Y. (2011). Study on the visible-light-induced photokilling effect of nitrogen-doped TiO2 nanoparticles on cancer cells. Nanoscale Research Letters., 6, 356. https://doi.org/10.1186/1556-276X-6-356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, C.-C., Wang, C.-X., Kuan, C.-Y., Chi, C.-Y., Chen, C.-Y., Lin, Y.-Y., Chen, G.-S., Hou, C.-H., & Lin, F.-H. (2020). Using C-doped TiO2 nanoparticles as a novel sonosensitizer for cancer treatment. Antioxidants (Basel). https://doi.org/10.3390/antiox9090880

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dong, F., Guo, S., Wang, H., Li, X., & Wu, Z. (2011). Enhancement of the visible light photocatalytic activity of C-Doped TiO2 nanomaterials prepared by a green synthetic approach. Journal of Physical Chemistry C, 115, 13285–13292. https://doi.org/10.1021/jp111916q

    Article  CAS  Google Scholar 

  24. Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X., & Zou, Z. (2007). Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental., 69, 138–144. https://doi.org/10.1016/j.apcatb.2006.06.015

    Article  CAS  Google Scholar 

  25. Vranješ, M., Kuljanin Jakovljević, J., Konstantinović, Z., Pomar, A., Stoiljković, M., Mitrić, M., Radetić, T., & Šaponjić, Z. (2017). Shaped Co2+ doped TiO2 nanocrystals synthesized from nanotubular precursor: Structure and ferromagnetic behavior. Journal of Advanced Ceramics, 6, 220–229. https://doi.org/10.1007/s40145-017-0233-5

    Article  CAS  Google Scholar 

  26. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI Journal of the National Cancer Institute, 82, 1107–1112. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  27. Abdel Wahab, S. I., Abdul, A. B., Alzubairi, A. S., Mohamed Elhassan, M., & Mohan, S. (2009). In vitro ultramorphological assessment of apoptosis induced by zerumbone on (HeLa). Journal of Biomedicine and Biotechnology, 2009, 769568. https://doi.org/10.1155/2009/769568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, T.-H., & Yan, H.-X. (2018). Antitumor- and apoptosis-inducing effects of pomolic acid against SK-MEL-2 human malignant melanoma cells are mediated via inhibition of cell migration and sub-G1 cell cycle arrest. Molecular Medicine Reports, 17, 1035–1040. https://doi.org/10.3892/mmr.2017.7977

    Article  CAS  PubMed  Google Scholar 

  29. Jackson, S. K., Liu, K. J., Liu, M., & Timmins, G. S. (2002). Detection and removal of contaminating hydroxylamines from the spin trap DEPMPO, and re-evaluation of its use to indicate nitrone radical cation formation and S(N)1 reactions. Free Radical Biology & Medicine, 32, 228–232. https://doi.org/10.1016/s0891-5849(01)00795-x

    Article  CAS  Google Scholar 

  30. Dubey, R. S., & Singh, S. (2017). Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results in Physics, 7, 1283–1288. https://doi.org/10.1016/j.rinp.2017.03.014

    Article  Google Scholar 

  31. Singh Surah, S., Vishwakarma, M., Kumar, R., Nain, R., Sirohi, S., & Kumar, G. (2019). Tuning the electronic band alignment properties of TiO2 nanotubes by boron doping. Results in Physics, 12, 1725–1731. https://doi.org/10.1016/j.rinp.2019.01.081

    Article  Google Scholar 

  32. Huang, F., Yan, A., & Zhao, H. (2016). Influences of doping on photocatalytic properties of TiO2 photocatalyst, semiconductor photocatalysis in materials. Mechanisms and Applications. https://doi.org/10.5772/63234

    Article  Google Scholar 

  33. Yu, J., Dai, G., Xiang, Q., & Jaroniec, M. (2011). Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed 001 facets. Journal of Materials Chemistry, 21, 1049–1057. https://doi.org/10.1039/C0JM02217A

    Article  CAS  Google Scholar 

  34. Guo, M., & Du, J. (2013). Electronic and optical properties of C-N-codoped TiO2: A first-principles GGA+U investigation. International Journal of Modern Physics B, 27, 1350123. https://doi.org/10.1142/S0217979213501233

    Article  CAS  Google Scholar 

  35. Zhao, C., Huang, D., & Chen, J. (2018). DFT study for combined influence of C-doping and external electric field on electronic structure and optical properties of TiO2 (001) surface. Journal of Materiomics., 4, 247–255. https://doi.org/10.1016/j.jmat.2018.05.003

    Article  Google Scholar 

  36. Xie, J., Pan, X., Wang, M., Ma, J., Fei, Y., Wang, P.-N., & Mi, L. (2016). The role of surface modification for TiO2 nanoparticles in cancer cells. Colloids and Surfaces. B, Biointerfaces, 143, 148–155. https://doi.org/10.1016/j.colsurfb.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  37. Oh, P.-S., Hwang, H., Jeong, H.-S., Kwon, J., Kim, H.-S., Kim, M., Lim, S., Sohn, M.-H., & Jeong, H.-J. (2016). Blue light emitting diode induces apoptosis in lymphoid cells by stimulating autophagy. International Journal of Biochemistry & Cell Biology, 70, 13–22. https://doi.org/10.1016/j.biocel.2015.11.004

    Article  CAS  Google Scholar 

  38. Oh, P.-S., Na, K. S., Hwang, H., Jeong, H.-S., Lim, S., Sohn, M.-H., & Jeong, H.-J. (2015). Effect of blue light emitting diodes on melanoma cells: Involvement of apoptotic signaling. Journal of Photochemistry and Photobiology B: Biology, 142, 197–203. https://doi.org/10.1016/j.jphotobiol.2014.12.006

    Article  CAS  Google Scholar 

  39. Yan, G., Zhang, L., Feng, C., Gong, R., Idiiatullina, E., Huang, Q., He, M., Guo, S., Yang, F., Li, Y., Ding, F., Ma, W., Pavlov, V., Han, Z., Wang, Z., Xu, C., Cai, B., Yuan, Y., & Yang, L. (2018). Blue light emitting diodes irradiation causes cell death in colorectal cancer by inducing ROS production and DNA damage. The International Journal of Biochemistry & Cell Biology., 103, 81–88. https://doi.org/10.1016/j.biocel.2018.08.006

    Article  CAS  Google Scholar 

  40. Oh, P.-S., Kim, H.-S., Kim, E.-M., Hwang, H., Ryu, H. H., Lim, S., Sohn, M.-H., & Jeong, H.-J. (2017). Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells. Journal of Cellular Physiology, 232, 3444–3453. https://doi.org/10.1002/jcp.25805

    Article  CAS  PubMed  Google Scholar 

  41. Zhuang, J., Liu, Y., Yuan, Q., Liu, J., Liu, Y., Li, H., & Wang, D. (2018). Blue light-induced apoptosis of human promyelocytic leukemia cells via the mitochondrial-mediated signaling pathway. Oncology Letters, 15, 6291–6296. https://doi.org/10.3892/ol.2018.8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, M.-Y., Chang, C.-J., & Chen, L.-Y. (2017). Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells. Journal of Photochemistry and Photobiology B: Biology, 173, 325–332. https://doi.org/10.1016/j.jphotobiol.2017.06.014

    Article  CAS  Google Scholar 

  43. Waer, C. N., Kaur, P., Tumur, Z., Hui, D. D., Le, B., Guerra, C., et al. (2020). Rosmarinic Acid/ Blue Light Combination Treatment Inhibits Head and Neck Squamous Cell Carcinoma In Vitro. Anticancer Res., 40, 751–758. https://doi.org/10.21873/anticanres.14006

    Article  CAS  PubMed  Google Scholar 

  44. Tuloup-Minguez, V., Greffard, A., Codogno, P., & Botti, J. (2011). Regulation of autophagy by extracellular matrix glycoproteins in HeLa cells. Autophagy, 7, 27–39. https://doi.org/10.4161/auto.7.1.13851

    Article  CAS  PubMed  Google Scholar 

  45. Fang, C., Gu, L., Smerin, D., Mao, S., & Xiong, X. (2017). The Interrelation between Reactive Oxygen Species and Autophagy in Neurological Disorders. Oxidative Medicine and Cellular Longevity., 2017, e8495160. https://doi.org/10.1155/2017/8495160

    Article  CAS  Google Scholar 

  46. Yoboue, E. D., Sitia, R., & Simmen, T. (2018). Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death & Disease, 9, 331. https://doi.org/10.1038/s41419-017-0033-4

    Article  CAS  Google Scholar 

  47. Ullman, E., Fan, Y., Stawowczyk, M., Chen, H.-M., Yue, Z., & Zong, W.-X. (2008). Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death and Differentiation, 15, 422–425. https://doi.org/10.1038/sj.cdd.4402234

    Article  CAS  PubMed  Google Scholar 

  48. Z. Yu, Q. Li, J. Wang, Y. Yu, Y. Wang, Q. Zhou, P. Li. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett, 15. https://doi.org/10.1186/s11671-020-03344-7

  49. Kushibiki, T., Hirasawa, T., Okawa, S., & Ishihara, M. (2013). Blue laser irradiation generates intracellular reactive oxygen species in various types of cells. Photomedicine and Laser Surgery, 31, 95–104. https://doi.org/10.1089/pho.2012.3361

    Article  CAS  PubMed  Google Scholar 

  50. He, W., Liu, Y., Wamer, W. G., & Yin, J.-J. (2014). Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. Journal of Food and Drug Analysis., 22, 49–63. https://doi.org/10.1016/j.jfda.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  51. Dvoranová, D., Barbieriková, Z., & Brezová, V. (2014). Radical Intermediates in Photo-induced Reactions on TiO2 (An EPR Spin Trapping Study). Molecules, 19, 17279–17304. https://doi.org/10.3390/molecules191117279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krumova, K., & Cosa, G. (2016). Chapter 1, Overview of Reactive Oxygen Species 1–21. https://doi.org/10.1039/9781782622208-00001

  53. Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: A review of current toxicological data. Particle and Fibre Toxicology, 10, 15. https://doi.org/10.1186/1743-8977-10-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number 451-03-68/2020-14/200017, 451-03-68/2020-14/200146).

Funding

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Serbian-Chinese bilateral project (grant number 451–00-478/2018–09/16), and by the Ministry of science and technology of the People's Republic of China (China-Serbia bilateral project SINO-SERBIA2018002).

Author information

Authors and Affiliations

Authors

Contributions

Milica Matijević: investigation, validation, methodology, formal analysis, writing—original Draft, visualization. Jelena Žakula, Lela Korićanac, Marija Radoičić, Xinyue Liang, Đura Nakarada, Jelena Filipović Tričković, and Ana Valenta Šobot: investigation, formal analysis, writing—original Draft. Maja Stanković: writing: review & editing, supervision. Miloš Mojović, Lan Mi, Marijana Petković and Milutin Stepić: resources, writing—review & editing, funding acquisition. Maja D. Nešić: conceptualization, writing—review & editing, methodology, project administration, supervision.

Corresponding author

Correspondence to Milica Matijević.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

All authors consented to participate.

Consent for publication

All authors approved the version to be published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matijević, M., Žakula, J., Korićanac, L. et al. Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles. Photochem Photobiol Sci 20, 1087–1098 (2021). https://doi.org/10.1007/s43630-021-00082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00082-2

Keywords

Navigation