Skip to main content

Advertisement

Log in

Photocatalytic reduction of 4-nitroaniline in aqueous solution using BiOCl/BiOBr/rGO ternary heterojunction under simulated UV–visible light irradiation

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

BiOCl/BiOBr/rGO ternary heterojunctions were synthesized and characterized, and their photocatalytic activities were examined. Three different rGO mass ratios were incorporated into BiOCl75%BiOBr25%; 1% rGO, 3% rGO, and 5% rGO, respectively. The successful incorporation of rGO into the composites was confirmed using powder X-ray diffraction (PXRD). Furthermore, calculated band gap, elemental composition, and composites’ morphology were investigated using UV–visible (UV–Vis) diffuse reflectance spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM), respectively. The photocatalytic activities of the ternary heterojunctions were evaluated toward the photocatalytic reduction of 4-nitroaniline (4-NA) in aqueous solution. Experimental results reveal that rGO incorporation enhances the activity of the prepared heterojunction photocatalysts, where photocatalyst containing 5% rGO exhibited the highest activity achieving rate of 0.84 min−1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu, W., Lin, R., Shen, L., Liang, R., Yuan, R., & Wu, L. (2013). Mechanistic insight into the photocatalytic hydrogenation of 4-nitroaniline over band-gap-tunable CdS photocatalysts. Physical Chemistry Chemical Physics: PCCP, 15, 19422. https://doi.org/10.1039/c3cp53195c

    Article  CAS  PubMed  Google Scholar 

  2. T. Clausen, A. Schwan-Jonczyk, G. Lang, W. Schuh, K.D. Liebscher, C. Springob, M. Franzke, W. Balzer, S. Imhoff, G. Maresch, R. Bimczok, Hair preparations, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006: 204–247. https://doi.org/10.1002/14356007.a12_571.pub2.

  3. Begum, P. M. S. (2011). Use of antioxidant-modified precipitated silica in natural rubber. Progress in Rubber, Plastics and Recycling Technology, 27, 215–228. https://doi.org/10.1177/147776061102700403

    Article  CAS  Google Scholar 

  4. R.A. Smiley, Phenylene-and toluenediamines, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2000: 616–622. https://doi.org/10.1002/14356007.a19_405.

  5. Wu, W., Liang, S., Chen, Y., Shen, L., Zheng, H., & Wu, L. (2012). High efficient photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over microcrystalline SrBi2Nb2O9. Catalysis Communications, 17, 39–42. https://doi.org/10.1016/j.catcom.2011.10.012

    Article  CAS  Google Scholar 

  6. Wu, W., Lin, R., Shen, L., Liang, R., Yuan, R., & Wu, L. (2013). Visible-light-induced photocatalytic hydrogenation of 4-nitroaniline over In2S3 photocatalyst in water. Catalysis Communications, 40, 1–4. https://doi.org/10.1016/j.catcom.2013.05.016

    Article  CAS  Google Scholar 

  7. Wu, W., Liu, G., Liang, S., Chen, Y., Shen, L., Zheng, H., Yuan, R., Hou, Y., & Wu, L. (2012). Efficient visible-light-induced photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over nanocrystalline PbBi2Nb2O9. Journal of Catalysis, 290, 13–17. https://doi.org/10.1016/j.jcat.2012.02.005

    Article  CAS  Google Scholar 

  8. Xiong, J., Liu, Y., Cao, C., Shen, L., Wu, W., Liang, S., Liang, R., & Wu, L. (2015). An architecture of CdS/H2Ti5O11 ultrathin nanobelt for photocatalytic hydrogenation of 4-nitroaniline with highly efficient performance. Journal of Materials Chemistry A., 3, 6935–6942. https://doi.org/10.1039/C5TA00629E

    Article  CAS  Google Scholar 

  9. Lang, X., Chen, X., & Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 43, 473–486. https://doi.org/10.1039/C3CS60188A

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y., Zhang, N., Tang, Z.-R., & Xu, Y.-J. (2013). A unique silk mat-like structured Pd/CeO2 as an efficient visible light photocatalyst for green organic transformation in water. ACS Sustainable Chemistry and Engineering, 1, 1258–1266. https://doi.org/10.1021/sc400116k

    Article  CAS  Google Scholar 

  11. Zhang, Y., & Xu, Y.-J. (2014). Bi2WO6: A highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Advances, 4, 2904–2910. https://doi.org/10.1039/C3RA46383D

    Article  CAS  Google Scholar 

  12. Sharma, K., Dutta, V., Sharma, S., Raizada, P., Hosseini-Bandegharaei, A., Thakur, P., & Singh, P. (2019). Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. Journal of Industrial and Engineering Chemistry, 78, 1–20. https://doi.org/10.1016/j.jiec.2019.06.022

    Article  CAS  Google Scholar 

  13. Imamura, K., Iwasaki, S., Maeda, T., Hashimoto, K., Ohtani, B., & Kominami, H. (2011). Photocatalytic reduction of nitrobenzenes to aminobenzenes in aqueous suspensions of titanium(iv) oxide in the presence of hole scavengers under deaerated and aerated conditions. Physical Chemistry Chemical Physics: PCCP, 13, 5114. https://doi.org/10.1039/c0cp02279a

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed, S. H., Bakiro, M., Aljasmi, F. I. A., Albreiki, A. M. O., Bayane, S., & Alzamly, A. (2020). Investigation of the band gap and photocatalytic properties of CeO2/rGO composites. Molecular Catalysis, 486, 110874. https://doi.org/10.1016/j.mcat.2020.110874

    Article  CAS  Google Scholar 

  15. Bakiro, M., Ahmed, S. H., & Alzamly, A. (2020). Investigation of the band gap energy shift and photocatalytic properties of Bi3+-doped ceria. Inorganic Chemistry Communications, 116, 107906. https://doi.org/10.1016/j.inoche.2020.107906

    Article  CAS  Google Scholar 

  16. Wang, Y., Zheng, Y.-Z., Lu, S., Tao, X., Che, Y., & Chen, J.-F. (2015). Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Applied Materials & Interfaces, 7, 6093–6101. https://doi.org/10.1021/acsami.5b00980

    Article  CAS  Google Scholar 

  17. Wu, W., Liu, G., Xie, Q., Liang, S., Zheng, H., Yuan, R., Su, W., & Wu, L. (2012). A simple and highly efficient route for the preparation of p-phenylenediamine by reducing 4-nitroaniline over commercial CdS visible light-driven photocatalyst in water. Green Chemistry, 14, 1705. https://doi.org/10.1039/c2gc35231a

    Article  CAS  Google Scholar 

  18. Lv, T., Pan, L., Liu, X., & Sun, Z. (2012). Visible-light photocatalytic degradation of methyl orange by CdS–TiO2–Au composites synthesized via microwave-assisted reaction. Electrochimica Acta, 83, 216–220. https://doi.org/10.1016/j.electacta.2012.08.018

    Article  CAS  Google Scholar 

  19. Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced Materials, 29, 1601694. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  20. Ao, Y., Wang, K., Wang, P., Wang, C., & Hou, J. (2016). Synthesis of novel 2D–2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Applied Catalysis B: Environmental, 194, 157–168. https://doi.org/10.1016/j.apcatb.2016.04.050

    Article  CAS  Google Scholar 

  21. Natarajan, T. S., Lee, J. Y., Bajaj, H. C., Jo, W. K., & Tayade, R. J. (2017). Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catalysis Today, 282, 13–23. https://doi.org/10.1016/j.cattod.2016.03.018

    Article  CAS  Google Scholar 

  22. Agrios, A. G., & Pichat, P. (2006). Recombination rate of photogenerated charges versus surface area: Opposing effects of TiO2 sintering temperature on photocatalytic removal of phenol, anisole, and pyridine in water. Journal of Photochemistry and Photobiology, A: Chemistry, 180, 130–135. https://doi.org/10.1016/j.jphotochem.2005.10.003

    Article  CAS  Google Scholar 

  23. A. Alzamly, M. Bakiro, S.H. Ahmed, S.M. Sallabi, R.A. Al Ajeil, S.A. Alawadhi, H.A. Selem, S.S.M. Al Meshayei, A. Khaleel, N. Al-Shamsi, N. Saleh, Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 375 (2019) 30–39. https://doi.org/10.1016/j.jphotochem.2019.01.031.

  24. Cooling, N., Burke, K. B., Zhou, X., Lind, S. J., Gordon, K. C., Jones, T. W., Dastoor, P. C., & Belcher, W. J. (2011). A study of the factors influencing the performance of ternary MEH-PPV:Porphyrin:PCBM heterojunction devices: A steric approach to controlling charge recombination. Solar Energy Materials and Solar Cells, 95, 1767–1774. https://doi.org/10.1016/j.solmat.2011.01.046

    Article  CAS  Google Scholar 

  25. Huan, H., Jile, H., Tang, Y., Li, X., Yi, Z., Gao, X., Chen, X., Chen, J., & Wu, P. (2020). Fabrication of ZnO@Ag@Ag3PO4 Ternary Heterojunction: Superhydrophilic Properties. Antireflection and Photocatalytic Properties, Micromachines., 11, 309. https://doi.org/10.3390/mi11030309

    Article  Google Scholar 

  26. Pramoda, K., Gupta, U., Chhetri, M., Bandyopadhyay, A., Pati, S. K., & Rao, C. N. R. (2017). Nanocomposites of C 3 N 4 with Layers of MoS 2 and Nitrogenated RGO, Obtained by Covalent Cross-Linking: Synthesis, Characterization, and HER Activity. ACS Applied Materials & Interfaces, 9, 10664–10672. https://doi.org/10.1021/acsami.7b00085

    Article  CAS  Google Scholar 

  27. Zhang, R., Zhao, C., Zhang, T., Han, Q., Li, Y., Liu, Y., & Zeng, K. (2020). Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and Bi25FeO40 for enhanced visible-light photocatalysis. Journal of Inorganic and Organometallic Polymers and Materials, 30, 2152–2162. https://doi.org/10.1007/s10904-019-01385-9

    Article  CAS  Google Scholar 

  28. Tauc, J. (1970). Absorption edge and internal electric fields in amorphous semiconductors. Materials Research Bulletin, 5, 721–729. https://doi.org/10.1016/0025-5408(70)90112-1

    Article  CAS  Google Scholar 

  29. V. Kokla, A. Tselikas, Computational retrieval techniques in the interpretation of medieval ink manuscripts, in: Griechisch-Byzantinische Handschriftenforsch., De Gruyter, 2020: pp. 563–580.

  30. S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, G. Palmisano, (Photo)catalyst Characterization Techniques, in: Heterog. Photocatal. Elsevier, 2019: pp. 87–152. https://doi.org/10.1016/B978-0-444-64015-4.00004-3.

  31. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  32. Zhang, M., Gong, J., Zeng, G., Zhang, P., Song, B., Cao, W., Liu, H., & Huan, S. (2018). Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 169–183. https://doi.org/10.1016/j.colsurfa.2018.09.049

    Article  CAS  Google Scholar 

  33. Padhi, D. K., Panigrahi, T. K., Parida, K., Singh, S. K., & Mishra, P. M. (2017). Green Synthesis of Fe 3 O 4 /RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 5, 10551–10562. https://doi.org/10.1021/acssuschemeng.7b02548

    Article  CAS  Google Scholar 

  34. Moghanlou, A. O., Bezaatpour, A., Sadr, M. H., Yosefi, M., & Salimi, F. (2021). Cu2O/rGO as an efficient photocatalyst for transferring of nitro group to amine group under visible light irradiation. Materials Science in Semiconductor Processing, 130, 105838. https://doi.org/10.1016/j.mssp.2021.105838

    Article  CAS  Google Scholar 

  35. Kumar, S., Pandit, V., Bhattacharyya, K., & Krishnan, V. (2018). Sunlight driven photocatalytic reduction of 4-nitrophenol on Pt decorated ZnO-RGO nanoheterostructures. Materials Chemistry and Physics, 214, 364–376. https://doi.org/10.1016/j.matchemphys.2018.04.113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was financially supported by the United Arab Emirates University, Emirates Center for Energy and Environment Research, Collaboration Team Research (Grant no. 31R238, Ahmed Alzamly).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alzamly.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alismaail, S., Ahmed, S.H., Bakiro, M. et al. Photocatalytic reduction of 4-nitroaniline in aqueous solution using BiOCl/BiOBr/rGO ternary heterojunction under simulated UV–visible light irradiation. Photochem Photobiol Sci 20, 997–1009 (2021). https://doi.org/10.1007/s43630-021-00075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00075-1

Keywords

Navigation