Skip to main content

Advertisement

Log in

Biomechanical Analysis of Trapezoidal Thread Screw–Rod Fixation in Pedicle Section of Cervical Spine: A Finite-Element Analysis

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Cervical pedicle screw-rod fixation presents a complex approach in spinal surgery, offering enhanced spine stabilization in variable conditions considering traumatic injuries, degenerative changes, as well as orthopaedic and oncological ailments. This technique employs small diameter screw implants strategically placed to bolster the mechanical integrity of the spine. Notably, it involves minimally invasive procedures, resulting in smaller incisions and reduced patient discomfort. This study aims to assess the effects of trapezoidal thread screws in pedicle sections of the cervical spine during flexion-extension loadings, focusing on factors such as range of motion (ROM), implant stress, and stress on adjacent bone.

Methods

Utilizing CT scan data, a finite element model of the cervical spine (C2-C7 vertebrae) was prepared. Trapezoidal thread screws were integrated into a single-level pedicle screw-rod fixation at the C5-C6 vertebrae. The C2 vertebra were given a compressive load of 50 N along with a moment of 1 Nm, resulting in the immobilization of the C7.

Results and Discussion

The results indicate a reduction in ROM at the C5-C6 level by 69% to 77% compared to the intact spine during flexion-extension loading, with a slight increase in ROM observed at adjacent cervical spine levels. Stress analysis revealed that the trapezoidal thread screws induced stresses ranging from 24 MPa to 29 MPa in PEEK trapezoidal screw-rod implants, which fall below the material's yield stress.

Conclusions

This suggests that the trapezoidal thread profile may be advantageous in minimizing stress concentration, attributed to its larger contact area with the vertebrae bone between the threads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are fully available and can be obtained from the corresponding author upon request. No external repository has been used to store the data, but comprehensive datasets can be provided following any ethical and legal guidelines upon request to the corresponding author.

References

  1. Chen, P., Li, Z., & Hu, Y. (2016). Prevalence of osteoporosis in China: A meta-analysis and systematic review. BMC Public Health, 16, 1–11.

    Article  CAS  Google Scholar 

  2. Yu, Y., Xie, Y., Jian, Q., Shi, Y., Zhang, G., & Fan, X. (2020). Biomechanical analysis and optimization of screw fixation technique for the cortical bone channel of lower thorax: Study protocol clinical trial (SPIRIT Compliant). Medicine, 99(7), e19046.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weiser, L., Huber, G., Sellenschloh, K., et al. (2017). Insufficient stability of pedicle screws in osteoporotic vertebrae: Biomechanical correlation of bone mineral density and pedicle screw fixation strength. European Spine Journal, 26, 2891–2897.

    Article  PubMed  Google Scholar 

  4. Bullmann, V., Schmoelz, W., Richter, M., et al. (2010). Revision of cannulated and perforated cement-augmented pedicle screws: A biomechanical study in human cadavers. Spine, 35, E932–E939.

    Article  PubMed  Google Scholar 

  5. Kueny, R. A., Kolb, J. P., Lehmann, W., et al. (2014). Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: Pullout versus fatigue testing. European Spine Journal, 23, 2196–2202.

    Article  PubMed  Google Scholar 

  6. Kim, H. J., Chun, H. J., et al. (2012). The biomechanical effect of pedicle screws’ insertion angle and position on the superior adjacent segment in 1 segment lumbar fusion. Spine, 37, 1637–1644.

    Article  PubMed  Google Scholar 

  7. Sven, H., Yannick, L., Daniel, B., et al. (2014). Influence of screw augmentation in posterior dynamic and rigid stabilization systems in osteoporotic lumbar vertebrae. Spine, 39, E384–E389.

    Article  Google Scholar 

  8. Zindrick, M. R., Wiltse, L. L., et al. (1987). Analysis of themorphometric characteristics of the thoracic and lumbar pedicles. Spine, 12, 160–166.

    Article  CAS  PubMed  Google Scholar 

  9. Da, L., Shi, L., Lei, W., et al. (2016). Biomechanical comparison of expansive pedicle screw and polymethylmethacrylate-augmented pedicle screw in osteoporotic synthetic bone in primary implantation: An experimental study. Clinical Spine Surgery, 29, E351–E357.

    Article  Google Scholar 

  10. Ghermandi, R., Pipola, V., Colangeli, S., et al. (2018). Polymethylmethacrylate-augmented fenestrated pedicle-screw fixation in low bone quality patients: A case series and literature review. Journal of Biological Regulators and Homeostatic Agents, 12, 71–76.

    Google Scholar 

  11. Rajaee, S. S., Bae, H. W., Kanim, L. E. A., & Delamarter, R. B. (2012). Spinal fusion in the United States: Analysis of trends from 1998 to 2008. Spine, 37, 67–76.

    Article  PubMed  Google Scholar 

  12. Fior Markets. (2020). Global pedicle screw system market by product, surgery type, indication, application, region, industry analysis, size, share, growth, trends, and forecast 2018 to 2025. Fior Markets.

    Google Scholar 

  13. Pfeiffer, F. M., & Abernathie, D. L. (2006). A comparison of pullout strength for pedicle screws of different designs: A study using tapped and untapped pilot holes. Spine, 31, E867–E870.

    Article  PubMed  Google Scholar 

  14. Seichi, A., Takeshita, K., Nakajima, S., Akune, T., Kawaguchi, H., & Nakamura, K. (2005). Revision cervical spine surgery using transarticular or pedicle screws under a computer-assisted image-guidance system. Journal of Orthopaedic Science, 10, 385–390.

    Article  PubMed  Google Scholar 

  15. Addevico, F., Morandi, M., Scaglione, M., & Solitro, G. F. (2020). Screw insertion torque as parameter to judge the fixation. Assessment of torque and pull-out strength in different bone densities and screw-pitches. Clinical Biomechanics, 72, 130–213.

    Article  PubMed  Google Scholar 

  16. Amirouche, F., Solitro, G. F., & Magnan, B. P. (2016). Stability and spine pedicle screws fixation strength—A comparative study of bone density and insertion angle. Spine Deformity, 4, 261–267.

    Article  PubMed  Google Scholar 

  17. Battula, S., Schoenfeld, A. J., Sahai, V., Vrabec, G. A., Tank, J., & Njus, G. O. (2008). The effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone. Journal of Trauma, 64, 990–995.

    PubMed  Google Scholar 

  18. Kim, Y. Y., Choi, W. S., & Rhyu, K. W. (2012). Assessment of pedicle screw pullout strength based on various screw designs and bone densities—An ex vivo biomechanical study. Spine Journal, 12, 164–168.

    Article  Google Scholar 

  19. Brasiliense, L. B., Lazaro, B. C., Reyes, P. M., Newcomb, A. G., Turner, J. L., Crandall, D. G., et al. (2013). Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. Spine Journal, 13(8), 947–956.

    Article  Google Scholar 

  20. Wang, T., Boone, C., Behn, A. W., Ledesma, J. B., & Bishop, J. A. (2016). Cancellous screws are biomechanically superior to cortical screws in metaphyseal bone. Orthopedics, 39(5), e828–e832.

    Article  PubMed  Google Scholar 

  21. Kumar, R., & Kumar, A. (2023). Biomechanical analysis of a single-level customized cage screw fixation for anterior cervical discectomy and fusion in the cervical spine: an in-silico study. Biomedical Physics & Engineering Express., 9(4), 045018.

    Article  Google Scholar 

  22. Kumar, R. (2023). Biomechanical analysis of two-level novel cage type implant for anterior cervical discectomy and fusion: A finite element analysis. Journal of Long-Term Effects of Medical Implants., 33(4), 43–52.

    Article  PubMed  Google Scholar 

  23. Hsieh, M. K., Li, Y. D., Liu, M. Y., Lin, C. X., Tsai, T. T., Lai, P. L., & Tai, C. L. (2021). Biomechanical comparison of fixation stability among various pedicle screw geometries: Effects of screw outer/inner projection shape and thread profile. Applied Sciences, 11(21), 9901.

    Article  CAS  Google Scholar 

  24. Sensale, M., Vendeuvre, T., Schilling, C., Grupp, T., Rochette, M., & Dall’Ara, E. (2021). Patient-specific finite element models of posterior pedicle screw fixation: Effect of screw’s size and geometry. Frontiers in Bioengineering and Biotechnology, 9, 643154.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu, M. Y., Tsai, T. T., Lai, P. L., Hsieh, M. K., Chen, L. H., & Tai, C. L. (2020). Biomechanical comparison of pedicle screw fixation strength in synthetic bones: Effects of screw shape, core/thread profile and cement augmentation. PLoS ONE, 15(2), e0229328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, G., Ma, W., Xu, R., Godinsky, R., Sun, S., Feng, J., Zhao, L., Hu, Y., Zhou, L., & Liu, J. (2013). Clinical application of combined fixation in the cervical spine using posterior transfacet screws and pedicle screws. Journal of Clinical Neuroscience, 20(4), 560–564.

    Article  PubMed  Google Scholar 

  27. Aydin, A. L., Sasani, M., Erbulut, D. U., Oktenoglu, T., & Ozer, A. F. (2020). A new concept of motion preservation surgery of the cervical spine: PEEK rods for the posterior cervical region. Bio-Medical Materials and Engineering, 31(4), 235–251.

    Article  PubMed  Google Scholar 

  28. Gandhi, A. A., Grosland, N. M., Kallemeyn, N. A., Kode, S., Fredericks, D. C., & Smucker, J. D. (2019). Biomechanical analysis of the cervical spine following disc degeneration, disc fusion, and disc replacement: A finite element study. International journal of spine surgery, 13(6), 491–500.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bhattacharya, S., Roy, S., Rana, M., Banerjee, S., Karmakar, S. K., & Biswas, J. K. (2019). Biomechanical performance of a modified design of dynamic cervical implant compared to conventional ball and socket design of an artificial intervertebral disc implant: A finite element study. Journal of Mechanics in Medicine and Biology, 19(4), 1950017.

    Article  Google Scholar 

  30. Hua, W., Zhi, J., Ke, W., Wang, B., Yang, S., Li, L., & Yang, C. (2020). Adjacent segment biomechanical changes after one-or two-level anterior cervical discectomy and fusion using either a zero-profile device or cage plus plate: A finite element analysis. Computers in Biology and Medicine, 120, 103760.

    Article  PubMed  Google Scholar 

  31. Manickam, P. S., Ghosh, G., & Roy, S. (2022). Optimization of bone graft shapes of s-type cervical cage through genetic algorithm. International Journal for Multiscale Computational Engineering, 20(1), 55–68.

    Article  Google Scholar 

  32. Rho, J. Y., Hobatho, M. C., & Ashman, R. B. (1995). Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering & Physics, 17(5), 347–355.

    Article  CAS  Google Scholar 

  33. Manickam, P. S., Roy, S., & Shetty, G. M. (2021). Biomechanical evaluation of a novel S-type, dynamic zero-profile cage design for anterior cervical discectomy and fusion with variations in bone graft shape: A finite element analysis. World Neurosurgy, 154, e199-214.

    Article  Google Scholar 

  34. Biswas, J. K., Karmakar, S. K., Majumder, S., Banerjee, P. S., Saha, S., & Roychowdhury, A. (2014). Optimization of spinal implant screw for lower vertebra through finite element studies. Journal of Long-Term Effects of Medical Implants, 24(2–3), 99–108.

    Article  CAS  PubMed  Google Scholar 

  35. Panjabi, M. M., Crisco, J. J., Vasavada, A., Oda, T., Cholewicki, J., Nibu, K., & Shin, E. (2001). Mechanical properties of the human cervical spine as shown by three-dimensional load–displacement curves. Spine, 26(24), 2692–2700.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly, N., & McGarry, J. P. (2012). Experimental and numerical characterisation of the elastoplastic properties of bovine trabecular bone and a trabecular bone analogue. Journal of the Mechanical Behavior of Biomedical Materials, 9, 184–197.

    Article  PubMed  Google Scholar 

  37. Katonis, P., Christoforakis, J., Aligizakis, A. C., Papadopoulos, C., Sapkas, G., & Hadjipavlou, A. (2003). Complications and problems related to pedicle screw fixation of the spine. Clinical Orthopaedics and Related Research®, 411, 86–94.

    Article  Google Scholar 

  38. Biswas, J. K., Rana, M., Majumder, S., Karmakar, S. K., & Roychowdhury, A. (2018). Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: A finite element study. Journal of Orthopaedic Science, 23(2), 258–265.

    Article  PubMed  Google Scholar 

  39. Shi, L., Shen, K., Chu, L., Yu, K. X., Yu, Q. S., Deng, R., & Deng, Z. L. (2019). Biomechanical study of novel unilateral fixation combining unilateral pedicle and contralateral translaminar screws in the subaxial cervical spine. World Neurosurgery, 121, e684–e690.

    Article  PubMed  Google Scholar 

  40. Abumi, K., Itoh, H., Taneichi, H., & Kaneda, K. (1994). Transpedicular screw fixation for traumatic lesions of the middle and lower cervical spine: Description of the techniques and preliminary report. Clinical Spine Surgery, 7(1), 19–28.

    CAS  Google Scholar 

  41. Abumi, K., Shono, Y., Ito, M., Taneichi, H., Kotani, Y., & Kaneda, K. (2000). Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine, 25(8), 962–969.

    Article  CAS  PubMed  Google Scholar 

  42. Hilibrand, A. S., & Robbins, M. (2004). Adjacent segment degeneration and adjacent segment disease: The consequences of spinal fusion? Spine Journal, 4(6 Suppl), 190S-194S.

    Article  Google Scholar 

  43. Ahn, Y. H., Chen, W. M., Lee, K. Y., Park, K. W., & Lee, S. J. (2008). Comparison of the load-sharing characteristics between pedicle based dynamic and rigid rod devices. Biomedical Materials, 3(4), 044101.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, A., Kumari, S. et al. Biomechanical Analysis of Trapezoidal Thread Screw–Rod Fixation in Pedicle Section of Cervical Spine: A Finite-Element Analysis. JOIO (2024). https://doi.org/10.1007/s43465-024-01170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43465-024-01170-y

Keywords

Navigation