Skip to main content

Advertisement

Log in

Efficacy and Safety of High-Viscosity Bone Cement in Percutaneous Vertebroplasty for Kummell’s Disease

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

To analyze and evaluate the clinical outcomes of using high-viscosity bone cement compared to low-viscosity bone cement in percutaneous vertebroplasty (PVP) for treatment of Kummell’s disease.

Methods

From July 2017 to July 2019, 68 Kummell’s disease patients who underwent PVP were chosen and separated into 2 groups: H group (n = 34), were treated with high-viscosity bone cement and L group (n = 34), treated with low-viscosity bone cement during treatment. The operation time, number of fluoroscopy tests done, and amount of bone cement perfusion were recorded for both groups. Clinical outcomes were compared, by measuring their Visual Analog Scale (VAS), Oswestry Disability Index (ODI), Kyphosis Cobb’s angle, vertebral height compression rate, and other complications.

Results

High-viscosity group showed less operation time and reduced number of fluoroscopy tests than the low-viscosity group (P < 0.05). When compared to preoperative period, both groups’ VAS and ODI scores were significantly reduced at 1 day and 1 year postoperatively (P < 0.05). The vertebral height compression rate and Cobb’s angle were significantly lower (P < 0.05) in both groups after surgery compared with those before surgery (P < 0.05). The cement leakage rate in group H was 26.5%, which was significantly lower than that in group L, which was 61.8% (P < 0.05).

Conclusions

High-viscosity and low-viscosity bone cement in PVP have similar clinical efficacy in reducing pain in patients during the treatment, but in contrast, high-viscosity bone cement shortens the operative time, reduces number of fluoroscopy views and vertebral cement leakage and improves surgical safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All information included in this review is documented by relevant references.

References

  1. Pappou, I. P., Papadopoulos, E. C., Swanson, A. N., Cammisa, F. P., Jr., & Girardi, F. P. (2008). Osteoporotic vertebral fractures and collapse with intravertebral vacuum sign (Kümmel’s disease). Orthopedics, 31(1), 61–66.

    Article  PubMed  Google Scholar 

  2. Kümmell, H. (1895). Die rarefizierende ostitis der Wirbelkorper. Deutsche Med, 21(1), 180–181.

    Article  Google Scholar 

  3. Lim, J., Choi, S. W., Youm, J. Y., Kwon, H. J., Kim, S. H., & Koh, H. S. (2018). Posttraumatic delayed vertebral collapse: Kummell’s disease. Journal of Korean Neurosurgical Association, 61(1), 1–9.

    Article  Google Scholar 

  4. Formica, M., Basso, M., Cavagnaro, L., Formica, C., Zanirato, A., & Felli, L. (2016). Kümmell disease: Illustrative case for definition criteria. The Spine Journal, 16(10), e707–e708.

    Article  PubMed  Google Scholar 

  5. Xia, Y. H., Chen, F., Zhang, L., Li, G., Tang, Z. Y., Feng, B., et al. (2018). Percutaneous kyphoplasty treatment evaluation for patients with Kümmell disease based on a two-year follow-up. Experimental and Therapeutic Medicine, 16(4), 3617–3622.

    PubMed  PubMed Central  Google Scholar 

  6. Wang, W., Liu, Q., Liu, W. J., Li, Q. B., Cai, L., & Wang, Z. K. (2020). Different performance of intravertebral vacuum clefts in Kümmell’s disease and relevant treatment strategies. Orthopaedic Surgery, 12(1), 199–209.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu, A. M., Chi, Y. L., & Ni, W. F. (2013). Vertebral compression fracture with intravertebral vacuum cleft sign: Pathogenesis, image, and surgical intervention. Asian Spine Journal, 7(2), 148–155.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Siemionow, K., & Lieberman, I. H. (2007). Vertebral augmentation in osteoporosis and bone metastasis. Current Opinion in Supportive and Palliative Care, 1(4), 323–327.

    Article  PubMed  Google Scholar 

  9. Park, J. W., Park, J. H., Jeon, H. J., Lee, J. Y., Cho, B. M., & Park, S. H. (2017). Kümmell’s disease treated with percutaneous vertebroplasty: Minimum 1 year follow-up. Korean Journal of Neurotrauma, 13(2), 119–123.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ha, K. Y., Lee, J. S., Kim, K. W., & Chon, J. S. (2006). Percutaneous vertebroplasty for vertebral compression fractures with and without intravertebral clefts. Journal of Bone and Joint Surgery, British Volume, 88(5), 629–633.

    Article  PubMed  Google Scholar 

  11. Baroud, G., Crookshank, M., & Bohner, M. (2006). High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: An experimental model and study on cement leakage. Spine (Phila Pa 1976), 31(22), 2562–2568.

    Article  PubMed  Google Scholar 

  12. Luo, A. J., Liao, J. C., Chen, L. H., & Lai, P. L. (2022). High viscosity bone cement vertebroplasty versus low viscosity bone cement vertebroplasty in the treatment of mid-high thoracic vertebral compression fractures. The Spine Journal, 22(4), 524–534.

    Article  PubMed  Google Scholar 

  13. Wang, Q., Sun, C., Zhang, L., Wang, L., Ji, Q., Min, N., & Yin, Z. (2022). High- versus low-viscosity cement vertebroplasty and kyphoplasty for osteoporotic vertebral compression fracture: A meta-analysis. European Spine Journal, 31(5), 1122–1130.

    Article  PubMed  Google Scholar 

  14. Wang, W., Liu, H., Wu, Z., Teng, Y., Huang, Y., Liu, T., & Yang, H. (2022). A comparison of percutaneous kyphoplasty with high-viscosity and low-viscosity bone cement for treatment of osteoporotic vertebral compression fractures: A retrospective study. Geriatr Orthop Surg Rehabil, 13, 21514593221119624.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Georgy, B. A. (2013). Comparison between radiofrequency targeted vertebral augmentation and balloon kyphoplasty in the treatment of vertebral compression fractures: Addressing factors that affect cement extravasation and distribution. Pain Physician, 16(5), E513–E518.

    Article  PubMed  Google Scholar 

  16. Swartz, K., & Fee, D. (2008). Kümmell’s disease: A case report and literature review. Spine (Phila Pa 1976), 33(5), E152–E155.

    Article  PubMed  Google Scholar 

  17. Li, K. C., Li, A. F., Hsieh, C. H., Liao, T. H., & Chen, C. H. (2007). Another option to treat Kümmell’s disease with cord compression. European Spine Journal, 16(9), 1479–1487.

    Article  PubMed  Google Scholar 

  18. Liu, F., Chen, Z., Lou, C., Yu, W., Zheng, L., He, D., et al. (2018). Anterior reconstruction versus posterior osteotomy in treating Kümmell’s disease with neurological deficits: A systematic review. Acta Orthopaedica et Traumatologica Turcica, 52(4), 283–288.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang, Y., Peng, M., He, S., Tang, X., Dai, M., & Tang, C. (2016). Clinical efficacy of percutaneous kyphoplasty at the hyperextension position for the treatment of osteoporotic Kümmell disease. Clinical Spine Surgery, 29(4), 161–166.

    Article  PubMed  Google Scholar 

  20. Zhang, G. Q., Gao, Y. Z., Chen, S. L., Ding, S., Gao, K., & Wang, H. Q. (2015). Comparison of percutaneous vertebroplasty and percutaneous kyphoplasty for the management of Kümmell’s disease: A retrospective study. Indian Journal of Orthopaedics, 49(6), 577–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elnoamany, H. (2015). Percutaneous vertebroplasty: A first line treatment in traumatic non-osteoporotic vertebral compression fractures. Asian Spine Journal, 9(2), 178–184.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ploeg, W. T., Veldhuizen, A. G., The, B., & Sietsma, M. S. (2006). Percutaneous vertebroplasty as a treatment for osteoporotic vertebral compression fractures: A systematic review. European Spine Journal, 15(12), 1749–1758.

    Article  PubMed  Google Scholar 

  23. Nieuwenhuijse, M. J., Van Erkel, A. R., & Dijkstra, P. D. (2011). Cement leakage in percutaneous vertebroplasty for osteoporotic vertebral compression fractures: Identification of risk factors. The Spine Journal, 11(9), 839–848.

    Article  PubMed  Google Scholar 

  24. Peh, W. C., Gelbart, M. S., Gilula, L. A., & Peck, D. D. (2003). Percutaneous vertebroplasty: Treatment of painful vertebral compression fractures with intraosseous vacuum phenomena. AJR, American Journal of Roentgenology, 180(5), 1411–1417.

    Article  PubMed  Google Scholar 

  25. Ding, J., Zhang, Q., Zhu, J., Tao, W., Wu, Q., Chen, L., et al. (2016). Risk factors for predicting cement leakage following percutaneous vertebroplasty for osteoporotic vertebral compression fractures. European Spine Journal, 25(11), 3411–3417.

    Article  PubMed  Google Scholar 

  26. Chen, B., Li, Y., Xie, D., Yang, X., & Zheng, Z. (2011). Comparison of unipedicular and bipedicular kyphoplasty on the stiffness and biomechanical balance of compression fractured vertebrae. European Spine Journal, 20(8), 1272–1280.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tang, S., Fu, W., Zhang, H., Zhang, H., & Liang, B. (2019). efficacy and safety of high-viscosity bone cement vertebroplasty in treatment of osteoporotic vertebral compression fractures with intravertebral cleft. World Neurosurg, 132, e739–e745.

    Article  PubMed  Google Scholar 

  28. Zhang, Z. F., Huang, H., Chen, S., Liu, D. H., Feng, Y. H., Xie, C. L., et al. (2018). Comparison of high- and low-viscosity cement in the treatment of vertebral compression fractures: A systematic review and meta-analysis. Medicine (Baltimore), 97(12), e0184.

    Article  PubMed  Google Scholar 

  29. Tanigawa, N., Kariya, S., Komemushi, A., Tokuda, T., Nakatani, M., Yagi, R., et al. (2009). Cement leakage in percutaneous vertebroplasty for osteoporotic compression fractures with or without intravertebral clefts. AJR, American Journal of Roentgenology, 193(5), W442–W445.

    Article  PubMed  Google Scholar 

  30. Lee, H. J., Park, J., Lee, I. W., Yi, J. S., & Kim, T. (2019). Clinical, radiographic, and morphometric risk factors for adjacent and remote vertebral compression fractures over a minimum follow-up of 4 years after percutaneous vertebroplasty for osteoporotic vertebral compression fractures: Novel three-dimensional voxel-based morphometric analysis. World Neurosurgery, 125, e146–e157.

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D-JK; Methodology, D-PH; Software, D-PH; Formal analysis, J-HW and L-FW; Investigation, J-HW; Resources, L-FW; Writing—original draft, D-JK; Writing—review and editing, YS; Supervision, YS.

Corresponding author

Correspondence to Yong Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Standard Statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed Consent Statement

Written informed consent has been obtained from the patient(s) to publish this paper.

Institutional Review Board Statement

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Affiliated Hospital of Hebei University of Engineering (2022[K]038 and 2022-6-16).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, DJ., Han, DP., Wang, JH. et al. Efficacy and Safety of High-Viscosity Bone Cement in Percutaneous Vertebroplasty for Kummell’s Disease. JOIO 58, 575–586 (2024). https://doi.org/10.1007/s43465-024-01133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-024-01133-3

Keywords

Navigation