Skip to main content
Log in

The Effect of Indirect Decompression Through Extraforaminal Interbody Fusion for Degenerative Lumbar Disease

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Extraforaminal lumbar interbody fusion as with other methods that involve the mechanism of indirect decompression, the discussion not only focuses on the benefit of minimizing the risk of thecal sac injury and postoperative scarring, but also on the risk of insufficient decompression in the affected neural structures during the reduction of the affected segment.

Methods

Eighty-two patients presenting with degenerative lumbar disease with segmental instability underwent ELIF combined with transpedicular fixation and circumferential fusion. Clinical and radiographic evaluations were performed.

Results

The mean ODI significantly improved from 63.4 preoperatively to 32.3 1 year postoperatively. The mean VAS back pain significantly improved from 5.95 to 2.63 postoperatively and VAS (leg pain) improved from 6.04 to 2.44. The mean CSA increased from 103  mm2 preoperatively to 169  mm2 postoperatively. The median extension ratio of CSA was 33%. Disc height, segmental disc angle, and lumbar lordosis also improved significantly. Only three (3.7%) patients were revised using direct central decompression due to neurologic deterioration.

Conclusion

Spinal stenosis was resolved successfully by indirect decompression through extraforaminal interbody fusion via a transmuscular limited approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Harms, J. G., & Jeszenszky, D. (1998). Die posteriore, lumbale, interkorporelle Fusion in unilateraler transforaminaler Technik. Orthopaedics and Traumatology, 10, 90–102. https://doi.org/10.1007/s00064-006-0112-7

    Article  CAS  Google Scholar 

  2. Hara, M., Nishimura, Y., Nakajima, Y., Umebayashi, D., Takemoto, M., Yamamoto, Y., & Haimoto, S. (2015). Transforaminal Lumbar Interbody Fusion for Lumbar Degenerative Disorders: Mini-open TLIF and Corrective TLIF. Neurologia Medico-Chirurgica, 55, 547–556. https://doi.org/10.2176/nmc.oa.2014-0402

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lener, S., Wipplinger, Ch., Hernandez, R. N., Hussain, I., Kirnaz, S., Navarro-Ramirez, R., Schmidt, F. A., Kim, E., & Hartl, R. (2020). Defining the MIS-TLIF: A Systemic Review of Techniques and Technologies Used by Surgeons Worlwide. Global Spine Journal, 10, 151S-162S. https://doi.org/10.1177/2192568219882346

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zairi, F., Arikart, A., Allaoui, M., & Assaker, R. (2013). Transforaminal Lmbar Interbody Fusion: Comparison between Open and Mini-open Approaches with Two Years Follow-up. J Neurol Surg A, 74, 131–135. https://doi.org/10.1055/s-0032-1330956

    Article  CAS  Google Scholar 

  5. Lee JG, Kim HS, Kim SW. Minimally Invasive Extraforaminal lumbar Interbody Fusion for Revision Surgery: A Technique through Kambin's Triangle. Korean J Spine 12:267–271, 2015. https://doi.org/10.14245/kjs.2015.12.4.267

  6. Kurzbuch, A. R., & Recoules-Arche, D. (2017). Epidural Fibrosis Seen from a Different Angle: Extraforaminal Lumbar Interbody Fusion. J Neurol Surg A, 78, 82–86. https://doi.org/10.1055/s-0036-1584827

    Article  Google Scholar 

  7. Panjabi, M. M., Lydon, C., & Vasavada, A. (1994). On the understanding of clinical instability. Spine, 19, 2642–2650.

    Article  CAS  PubMed  Google Scholar 

  8. Iguchi, T., Kanemura, A., Kasahara, K., Sato, K., Kurihara, A., et al. (2004). Lumbar instability and clinical symptoms: Which is the more critical factor for symptoms: Sagittal translation or segment angulation? Journal of Spinal Disorders & Techniques, 17, 284–290.

    Article  Google Scholar 

  9. Izzo R, Guarnieri G, Guglielmi G, Muto M. Biomechanics of the spine. Part II: spinal instability. (2013) European journal of radiology. 82 (1): 127–38. 2013. https://doi.org/10.1016/j.ejrad.2012.07.023

  10. Kim, S., Yeon, T., Heo, Y., Lee, W., Yi, J., Kim, T., & Hwang, Ch. (2009). Radiographic Results of Single Level Transforaminal Lumbar Interbody Fusion in Degenerative Lumbar Spine Disease: Focusing on Changes of Segmental Lordosis in Fusion Segment. Clinics in Orthopedic Surgery, 1, 207–2014. https://doi.org/10.4055/cios.2009.1.4.207

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li, Y. M., Huang, Z., Towner, J., Li, Y. I., & Bucklen, B. (2022). Laterally placed expandable interbody spacers with and without adjustable lordosis improve patient outcomes: A preliminary one-year chart review. Clinical Neurology and Neurosurgery, 213, 107123. https://doi.org/10.1016/j.clineuro.2022.107123

    Article  PubMed  Google Scholar 

  12. Li, H. J., Ge, D. W., Zhang, S., Aisikeerbayi, A. J., Wang, H., He, Y. L., Bian, J., Cao, X. J., Yang, L., & Yan, J. W. (2018). Comparative study between mini-open TLIF via Wiltse's approach and conventional open TLIF in lumbar degenerative diseases. European Review for Medical and Pharmacological Sciences., 22(1 Suppl), 53–62.

    PubMed  Google Scholar 

  13. Shibayama, M., Li, G. H., Zhu, L. G., Ito, Z., & Ito, F. (2021). Microendoscopy-assisted extraforaminal lumbar interbody fusion for treating single-level spondylodesis. Journal of Orthopaedic Surgery and Research, 16, 166. https://doi.org/10.1186/s13018-021-02313-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oliviera, L., Marchi, L., Coutinho, E., et al. (2010). A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine, 35, 5331–5337. https://doi.org/10.1097/brs.0b013e3182022db0

    Article  Google Scholar 

  15. Fujibayashi, S., Hynes, R. A., Otsuki, B., Kimura, H., Takemoto, M., & Matsuda, S. (2015). Effect of Indirect Neural Decompression Through Oblique Lateral Interbody Fusion for Degenerative Lumbar Disease. Spine, 40, E175–E182. https://doi.org/10.1097/brs.0000000000000703

    Article  PubMed  Google Scholar 

  16. Kono Y, Gen H, Sakuma Y, Koshika Y. Comparison of Clinical and Radiologic Results of Mini-Open Transforaminal Lumbar Interbody Fusion and Extreme Lateral Interbody Fusion Indirect Decompression for Degenerative Lumbar Spondylolisthesis. Asian Spine J 12:356–364, 2018. https://doi.org/10.4184/2Fasj.2018.12.2.356

  17. Nakashima, H., Kanemura, T., Satake, K., Ishikawa, Y., Ouchida, J., Segi, N., Yamaguchi, H., & Imagama, S. (2019). Indirect Decompression on MRI Chronologically Progresses After Immediate Postlateral Lumbar Interbody Fusion: The Results From a Minimum of 2 Years Follow-Up. Spine, 44, E1411-1418. https://doi.org/10.1097/brs.0000000000003180

    Article  PubMed  Google Scholar 

  18. Hayashi, K., Suzuki, A., Ahmadi, S. A., et al. (2005). Mechanical stress induces elastic fibre disruption and cartilage matrix increase in ligamentum flavum. Science and Reports, 7, 13092. https://doi.org/10.1038/s41598-017-13360-w

    Article  CAS  Google Scholar 

  19. Sairyo K, Biyani A, Goel V et al. Pathomechanism of ligamentum flavum hypertrophy: a multidisciplinary investigation based on clinical, biomechanical, histologic, and biologic assessments. Spine (Phila Pa 1976) 30:2649–56, 2005. https://doi.org/10.1097/01.brs.0000188117.77657.ee

  20. Yoshida M, Shima K, Taniguchi Y et al. Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation. Spine (Phila Pa 1976) 17:1353–6, 19920. https://doi.org/10.1097/00007632-199211000-00015

  21. Doria, C., Balsamo, M., Rampal, V., & Solla, F. (2018). Minimally Invasive Far Lateral Lumbar Interbody Fusion: A Prospective Cohort Study. Global Spine Journal, 8, 512–516. https://doi.org/10.1177/2192568218756908

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, J., Li, H., Zhang, N., Wang, Z., Zhao, T., Chen, L., Chen, G., et al. (2020). Radiographic and clinical outcome of lateral lumbar interbody fusion for extreme lumbar spinal stenosis of Schizas grade D: A retrospective study. BMC Musculoskeletal Disorders, 21, 259. https://doi.org/10.1186/s12891-020-03282-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shimizu, T., Fujibayashi, S., & Otsuki, B. (2020). Indirect decompression with lateral interbody fusion for severe degenerative lumbar spinal stenosis: Minimum 1-year MRI follow-up. Journal of Neurosurgery. Spine. https://doi.org/10.3171/2020.1.spine191412

    Article  PubMed  Google Scholar 

  24. Shimizu, T., Fujibayashi, S., Otsuki, B., Murata, K., & Matsuda, S. (2021). Indirect decompression via oblique lateral interbody fusion for severe degenerative lumbar spinal stenosis: A comparative study with direct decompression transforaminal/posterior lumbar interbody fusion. The Spine Journal, 21, 963–971. https://doi.org/10.1016/j.spinee.2021.01.025

    Article  PubMed  Google Scholar 

  25. Nakashima H, Kanemura T, Satake K, Ishikawa Y, Ouchida J, Segi N, Yamaguchi H, Imagama S. Unplanned Second-Stage Decompression for Neurological Deterioration Caused by Central Canal Stenosis after Indirect Lumbar Decompression Surgery. Asian Spine J 13:584–591, 2019. https://doi.org/10.31616/asj.2018.0232

  26. Derman PB, Ohnmeiss DD, Lauderback A, Guyer RD. Indirect Decompression for the Treatment of Degenerative Lumbar Stenosis. International Journal of Spine Surgery 15:1066–1071, 2021. https://doi.org/10.14444/8192

  27. Malham, G. M., Parker, R. M., Goss, B., & Blecher, C. M. (2015). Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: Results from a prospective cohort study. European Spine Journal, 24, S339–S345. https://doi.org/10.1007/s00586-015-3807-3

    Article  Google Scholar 

  28. Khalsa, A. S., Eghbali, A., Eastlack, R. K., Tran, S., Akbarnia, B. A., Ledesma, J. B., & Mundis, G. M. (2019). Resting Pain Level as a Preoperative Predictor of Success With Indirect Decompression for Lumbar Spinal Stenosis: A Pilot Study. Global Spine Journal, 9, 150–154. https://doi.org/10.1177/2192568218765986

    Article  PubMed  Google Scholar 

  29. Kurzbuch, A. R., Kaech, D., Baranowski, P., Baranowska, A., & Recoules-Arche, D. (2017). Extraforaminal Lumbar Interbody Fusion at the L5–S1 Level: Technical Considerations and Feasibility. J Neurol Surg A, 78, 507–512. https://doi.org/10.1055/s-0037-1599226

    Article  Google Scholar 

Download references

Acknowledgements

Data statistics, Patrícia Martinková, Ph.D., Department of Statistical Modelling, Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic, Web: https://www.cs.cas.cz/martinkova/.

Funding

This work was supported by the internal project of Bulovka University Hospital grant nr. “22-IGS07-12”. Supported by Ministry of Health, Czech Republic – conceptual development of research organization (FNBul, 00064211).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Josef Vcelak, Adam Kral, Adrea Speldova, and Ladislav Toth. The first draft of the manuscript was written by Josef Vcelak and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Josef Vcelak.

Ethics declarations

Conflict of interest

All authors declare, that they have no relevant or non-financial interests to disclose. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethics approval

The study was performed with the approval of the institutional ethics committee of the university hospital (University Hospital Bulovka, Prague, Czech Republic, 1 July 2022). This study was performed in line with the principles of the Declaration of Helsinki.

Consent to participate and to publish

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vcelak, J., Kral, A., Speldova, A. et al. The Effect of Indirect Decompression Through Extraforaminal Interbody Fusion for Degenerative Lumbar Disease. JOIO 57, 2058–2065 (2023). https://doi.org/10.1007/s43465-023-01008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-023-01008-z

Keywords

Navigation