Skip to main content

Advertisement

Log in

Bibliometric and Visualized Analysis of Tissue Engineering for Cartilage Repair and Regeneration Over the Past Decade

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Tremendous progress has been made in the field of cartilage repair and regeneration, particularly with tissue-engineering approaches. This study aims to estimate the global status and current trends in the field of cartilage tissue engineering.

Methods

Publications from 2011 to 2020 on tissue engineering for cartilage repair and regeneration were retrieved from Web of Science Core Collection database. The source data were statistically evaluated based on the bibliometrics. In terms of visualized analysis, some bibliometric indicators such as bibliographic coupling, co-citation, co-authorship and co-occurrence analysis were performed by VOSviewer software, to investigate the research trends in tissue engineering for cartilage repair and regeneration.

Results

In total, 3715 papers were included. Since 2011, the amount of issued papers and relative research interest (RRI) have grown by leaps and bounds globally. The United States was the biggest contributor to the research in this field, due to the greatest citation frequency, the highest H index and the strongest total link strength. Romania had the highest average citation for each. The journal Tissue Engineering Part A published most articles in this field. For institutions, the largest contributors were Shanghai Jiaotong University, University of California System and Sichuan University. Studies could all be grouped into four main clusters: study of biomaterial scaffolds, study of seeding cells and growth factors, experimental animal model and clinical study, and mechanism research.

Conclusion

Great efforts should be put into the study of biomaterial scaffolds, seeding cells and growth factors, considered to be the next hot topics in cartilage tissue engineering. This findings provide collaborative insights and research orientation for academic researchers, surgeons and healthcare practitioners to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bobic, V., & Noble, J. (2000). Articular cartilage–to repair or not to repair. Journal of Bone and Joint Surgery. British Volume, 82, 165–166.

    Article  CAS  Google Scholar 

  2. Bicho, D., Ajami, S., Liu, C., Reis, R. L., & Oliveira, J. M. (2019). Peptide-biofunctionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: Challenges and opportunities. J Mater Chem B, 7, 1027–1044.

    Article  CAS  Google Scholar 

  3. Kuo, A. C., Rodrigo, J. J., Reddi, A. H., Curtiss, S., Grotkopp, E., & Chiu, M. (2006). Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthr Cartilage, 14, 1126–1135.

    Article  CAS  Google Scholar 

  4. Saris, D. B. F., Vanlauwe, J., Victor, J., Haspl, M., Bohnsack, M., Fortems, Y., et al. (2008). Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sport Med, 36, 235–246.

    Article  Google Scholar 

  5. Kwon, H., Brown, W. E., Lee, C. A., Wang, D., Paschos, N., Hu, J. C., et al. (2019). Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nature Reviews Rheumatology, 15, 550–570.

    Article  Google Scholar 

  6. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.

    Article  CAS  Google Scholar 

  7. Zhang, Y., Yu, J., Ren, K., Zuo, J., Ding, J., & Chen, X. (2019). Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules, 20, 1478–1492.

    Article  CAS  Google Scholar 

  8. Han, S. K., Song, M., Choi, K., & Choi, S.-W. (2021). Fabrication of biodegradable polyurethane foam scaffolds with customized shapes and controlled mechanical properties by gas foaming technique. Macromolecular Materials and Engineering, 306, 2100114.

    Article  CAS  Google Scholar 

  9. Deliormanli, A. M., & Atmaca, H. (2020). Effect of pore architecture on the mesenchymal stem cell responses to graphene/polycaprolactone scaffolds prepared by solvent casting and robocasting. J Porous Mat, 27, 49–61.

    Article  CAS  Google Scholar 

  10. Xia, H. T., Zhao, D. D., Zhu, H. L., Hua, Y. J., Xiao, K. Y., Xu, Y., et al. (2018). Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration. ACS Appl Mater Inter, 10, 31704–31715.

    Article  CAS  Google Scholar 

  11. Chen WM, Xu Y, Li YQ, Jia LT, Mo XM, Jiang GN, et al. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem Eng J 2020; 382: 122986.

  12. Ma, H. Y., Xue, L., & Nie, T. T. (2015). Fabrication of PLLA scaffold with gradient macro/micro/nano structure by electrophoretic deposition of carbon nanotube. Materials Letters, 159, 185–188.

    Article  CAS  Google Scholar 

  13. Tan, A. R., & Hung, C. T. (2017). Concise Review: Mesenchymal stem cells for functional cartilage tissue engineering: taking cues from chondrocyte-based constructs. Stem Cells Translational Medicine, 6, 1295–1303. https://doi.org/10.1002/sctm.16-0271

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rai, V., Dilisio, M. F., Dietz, N. E., & Agrawal, D. K. (2017). Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. Journal of Biomedical Materials Research. Part A, 105, 2343–2354.

    Article  CAS  Google Scholar 

  15. Lee, S. H., & Shin, H. (2007). Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliver Rev, 59, 339–359.

    Article  CAS  Google Scholar 

  16. Liu, Z. G., Yin, Y. M., Liu, W. D., & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics, 103, 135–158.

    Article  Google Scholar 

  17. Chen, D., Liu, Z., Luo, Z. H., Webber, M., & Chen, J. (2016). Bibliometric and visualized analysis of emergy research. Ecological Engineering, 90, 285–293.

    Article  Google Scholar 

  18. Zhang, R., Lin, J., Chen, F., et al. (2021). Trends of research on periprosthetic osteolysis: a bibliometric study based on VOSviewer. Indian J Orthop. https://doi.org/10.1007/s43465-021-00462-x

    Article  PubMed  Google Scholar 

  19. Wang, K., Xing, D., Dong, S., & Lin, J. (2019). The global state of research in nonsurgical treatment of knee osteoarthritis: a bibliometric and visualized study. BMC Musculoskel Dis, 20, 407. https://doi.org/10.1186/s12891-019-2804-9

    Article  Google Scholar 

  20. Zhang, H. T., Fan, Y. N., Wang, R., Feng, W. J., Chen, J. L., Deng, P., et al. (2020). Research trends and hotspots of high tibial osteotomy in two decades (from 2001 to 2020): a bibliometric analysis. Journal of Orthopaedic Surgery and Research, 15, 512.

    Article  Google Scholar 

  21. Zhou, T. P., Xu, Y. H., & Xu, W. D. (2020). Emerging research trends and foci of studies on the meniscus: a bibliometric analysis. Journal of Orthopaedic Surgery, 28, 2309499020947286.

    PubMed  Google Scholar 

  22. Mao, X. J., Chen, C. L., Wang, B., Hou, J., & Xiang, C. (2020). A global bibliometric and visualized analysis in the status and trends of subchondral bone research. Medicine, 99, 20406.

    Article  Google Scholar 

  23. Vaishya, R., Patralekh, M. K., & Vaish, A. (2019). The upsurge in research and publication on articular cartilage repair in the last 10 years. Indian J Orthop, 53, 586–594.

    Article  Google Scholar 

  24. Li, L. L., Ding, G. H., Feng, N., Wang, M. H., & Ho, Y. S. (2009). Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics, 80, 39–58.

    Article  CAS  Google Scholar 

  25. Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National academy of Sciences of the United States of America, 104, 19193–19198.

    Article  CAS  Google Scholar 

  26. da Silva, J. A. T., & Dobranszki, J. (2018). Multiple versions of the h-index: cautionary use for formal academic purposes. Scientometrics, 115, 1107–1113.

    Article  Google Scholar 

  27. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538.

    Article  Google Scholar 

  28. Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94, 589–593.

    Article  Google Scholar 

  29. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J Am Soc Inf Sci Tec, 61, 2389–2404.

    Article  Google Scholar 

  30. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New Engl J Med, 331, 889–895.

    Article  CAS  Google Scholar 

  31. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  Google Scholar 

  32. Hunziker, E. B., Quinn, T. M., & Hauselmann, H. J. (2002). Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartilage, 10, 564–572.

    Article  CAS  Google Scholar 

  33. Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., & Yoo, J. U. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238, 265–272.

    Article  CAS  Google Scholar 

  34. Huey, D. J., Hu, J. C., & Athanasiou, K. A. (2012). Unlike bone, cartilage regeneration remains elusive. Science, 338, 917–921.

    Article  CAS  Google Scholar 

  35. van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. J Am Soc Inf Sci Tec, 60, 1635–1651.

    Article  Google Scholar 

  36. Hu, J. Y., Gholami, A., Stone, N., Bartoszko, J., & Thoma, A. (2018). An evaluation of h-index as a measure of research productivity among Canadian academic plastic surgeons. Plast Surg, 26, 5–10.

    Article  Google Scholar 

  37. Agarwal, T., Chiesa, I., Presutti, D., Irawan, V., Vajanthri, K. Y., Costantini, M., et al. (2021). Recent advances in bioprinting technologies for engineering different cartilage-based tissues. Materials Science & Engineering, C: Materials for Biological Applications, 123, 112005. https://doi.org/10.1016/j.msec.2021.112005

    Article  CAS  Google Scholar 

  38. Lee, I. S., Lee, H., Chen, Y. H., & Chae, Y. (2020). Bibliometric analysis of research assessing the use of acupuncture for pain treatment over the past 20 years. Journal of Pain Research, 13, 367–376.

    Article  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China, grant number 51975400, 62031022 and 81972075, and Shanxi Provincial Key Medical Scientific Research Project, grant number 2020XM06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan Xiang or Shengbo Sang.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cheng, P., Duan, Q. et al. Bibliometric and Visualized Analysis of Tissue Engineering for Cartilage Repair and Regeneration Over the Past Decade. JOIO 56, 1206–1216 (2022). https://doi.org/10.1007/s43465-021-00569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-021-00569-1

Keywords

Navigation