Skip to main content

Advertisement

Log in

Synovium Derived Mesenchymal Stromal Cells (Sy-MSCs): A Promising Therapeutic Paradigm in the Management of Knee Osteoarthritis

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Synovium-derived mesenchymal stromal cell (Sy-MSC) is a newer member of the mesenchymal stromal cell families. The first successful demonstration of the mesenchymal stromal cell from the human synovial membrane was done in 2001 and since then its potential role for musculoskeletal regeneration has been keenly documented. The regenerative effects of Sy-MSCs are through paracrine signaling, direct cell–cell interactions, and extracellular vehicles. Sy-MSCs possess superior chondrogenicity than other sources of mesenchymal stromal cells. This article aims to outline the advancement of synovium-derived mesenchymal stromal cells along with a specific insight into the application for managing osteoarthritis knee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, D., Shen, J., Zhao, W., Wang, T., Han, L., Hamilton, J. L., & Im, H. J. (2017). Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research, 5, 16044. https://doi.org/10.1038/boneres.2016.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sophia Fox, A. J., Bedi, A., & Rodeo, S. A. (2009). The basic science of articular cartilage: Structure, composition, and function. Sports Health, 1(6), 461–468. https://doi.org/10.1177/1941738109350438

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dieppe, P. (2002). Epidemiology of the rheumatic diseases (2nd ed., p. 377). In: A. J. Silman & M. C. Hochberg (Eds.), Oxford: Oxford University Press, 2001, £95.00. ISBN: 0192631497. International Journal of Epidemiology, 31(5):1079–1080. https://doi.org/10.1093/ije/31.5.1079-a

  4. Karuppal, R. (2017). Current concepts in the articular cartilage repair and regeneration. Journal of Orthopaedics, 14(2), A1–A3. https://doi.org/10.1016/j.jor.2017.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang, R., Ma, J., Han, J., Zhang, W., & Ma, J. (2019). Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. American Journal of Translational Research, 11(10), 6275–6289.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F., & Ding, J. (2019). Mesenchymal stem cells for regenerative medicine. Cells, 8(8), 886. https://doi.org/10.3390/cells8080886

    Article  CAS  PubMed Central  Google Scholar 

  7. Berebichez-Fridman, R., & Montero-Olvera, P. R. (2018). Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos University Medical Journal, 18(3), e264–e277. https://doi.org/10.18295/squmj.2018.18.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells—Current trends and future prospective. Bioscience Report, 35(2), e00191. https://doi.org/10.1042/BSR20150025

    Article  CAS  Google Scholar 

  9. Gale, A. L., Linardi, R. L., McClung, G., Mammone, R. M., & Ortved, K. F. (2019). Comparison of the chondrogenic differentiation potential of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Frontiers in Veterinary Science, 6, 178. https://doi.org/10.3389/fvets.2019.00178

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, N., Gao, J., Mi, L., Zhang, G., Zhang, L., Zhang, N., Huo, R., Hu, J., & Xu, K. (2020). Synovial membrane mesenchymal stem cells: Past life, current situation, and application in bone and joint diseases. Stem Cell Research & Therapy, 11(1), 381. https://doi.org/10.1186/s13287-020-01885-3

    Article  CAS  Google Scholar 

  11. Keating, A. (2006). Mesenchymal stromal cells. Current Opinion in Hematology, 13(6), 419–425. https://doi.org/10.1097/01.moh.0000245697.54887.6f

    Article  PubMed  Google Scholar 

  12. Jeyaraman, M., Muthu, S., & Ganie, P. A. (2020). Does the source of mesenchymal stem cell have an effect in the management of osteoarthritis of the knee? Meta-analysis of randomized controlled trials. Cartilage, 1947603520951623. https://doi.org/10.1177/1947603520951623.

  13. Wolfstadt, J. I., Cole, B. J., Ogilvie-Harris, D. J., Viswanathan, S., & Chahal, J. (2015). Current concepts: The role of mesenchymal stem cells in the management of knee osteoarthritis. Sports Health, 7(1), 38–44. https://doi.org/10.1177/1941738114529727

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hass, R., Kasper, C., Böhm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling: CCS, 9, 12. https://doi.org/10.1186/1478-811X-9-12

    Article  CAS  PubMed Central  Google Scholar 

  15. Kim, H. J., & Im, G. I. (2009). Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: Greater doses of growth factor are necessary. Journal of Orthopaedic Research, 27(5), 612–619. https://doi.org/10.1002/jor.20766

    Article  CAS  PubMed  Google Scholar 

  16. Khalifeh Soltani, S., Forogh, B., Ahmadbeigi, N., Hadizadeh Kharazi, H., Fallahzadeh, K., Kashani, L., Karami, M., Kheyrollah, Y., & Vasei, M. (2019). Safety and efficacy of allogenic placental mesenchymal stem cells for treating knee osteoarthritis: A pilot study. Cytotherapy, 21(1), 54–63. https://doi.org/10.1016/j.jcyt.2018.11.003

    Article  PubMed  Google Scholar 

  17. Hsu, S. H., Huang, T. B., Cheng, S. J., Weng, S. Y., Tsai, C. L., Tseng, C. S., Chen, D. C., Liu, T. Y., Fu, K. Y., & Yen, B. L. (2011). Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Tissue Engineering Part A, 17(11–12), 1549–1560. https://doi.org/10.1089/ten.TEA.2010.0419

    Article  CAS  PubMed  Google Scholar 

  18. De Bari, C., Dell’Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism, 44(8), 1928–1942. https://doi.org/10.1002/1529-0131(200108)44:8%3c1928::AID-ART331%3e3.0.CO;2-P

    Article  PubMed  Google Scholar 

  19. Fan, J., Varshney, R. R., Ren, L., Cai, D., & Wang, D. A. (2009). Synovium-derived mesenchymal stem cells: A new cell source for musculoskeletal regeneration. Tissue Engineering. Part B, Reviews, 15(1), 75–86. https://doi.org/10.1089/ten.teb.2008.0586

    Article  CAS  PubMed  Google Scholar 

  20. Glenn, J. D., & Whartenby, K. A. (2014). Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World Journal of Stem Cells., 6(5), 526–539. https://doi.org/10.4252/wjsc.v6.i5.526

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spees, J. L., Lee, R. H., & Gregory, C. A. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research and Therapy, 7(1), 125. https://doi.org/10.1186/s13287-016-0363-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caplan, A. I. (2009). Why are MSCs therapeutic? New data: New insight. Journal of Pathology, 217(2), 318–324. https://doi.org/10.1002/path.2469

    Article  CAS  Google Scholar 

  23. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis and Rheumatism, 52(8), 2521–2529. https://doi.org/10.1002/art.21212

    Article  PubMed  Google Scholar 

  24. Koga, H., Muneta, T., Ju, Y. J., Nagase, T., Nimura, A., Mochizuki, T., Ichinose, S., von der Mark, K., & Sekiya, I. (2007). Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells, 25(3), 689–696. https://doi.org/10.1634/stemcells.2006-0281

    Article  CAS  PubMed  Google Scholar 

  25. De Bari, C., Dell’Accio, F., Karystinou, A., Guillot, P. V., Fisk, N. M., Jones, E. A., McGonagle, D., Khan, I. M., Archer, C. W., Mitsiadis, T. A., Donaldson, A. N., Luyten, F. P., & Pitzalis, C. (2008). A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis and Rheumatism, 58(1), 240–250. https://doi.org/10.1002/art.23143

    Article  CAS  PubMed  Google Scholar 

  26. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327(3), 449–462. https://doi.org/10.1007/s00441-006-0308-z

    Article  CAS  PubMed  Google Scholar 

  27. Nimura, A., Muneta, T., Koga, H., Mochizuki, T., Suzuki, K., Makino, H., Umezawa, A., & Sekiya, I. (2008). Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: Comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis and Rheumatism, 58(2), 501–510. https://doi.org/10.1002/art.23219

    Article  CAS  PubMed  Google Scholar 

  28. Tateishi, K., Ando, W., Higuchi, C., Hart, D. A., Hashimoto, J., Nakata, K., Yoshikawa, H., & Nakamura, N. (2008). Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: Potential feasibility for clinical applications. Cell Transplantation, 17(5), 549–557. https://doi.org/10.3727/096368908785096024

    Article  CAS  PubMed  Google Scholar 

  29. Shirasawa, S., Sekiya, I., Sakaguchi, Y., Yagishita, K., Ichinose, S., & Muneta, T. (2006). In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. Journal of Cellular Biochemistry, 97(1), 84–97. https://doi.org/10.1002/jcb.20546

    Article  CAS  PubMed  Google Scholar 

  30. Jones, E. A., Crawford, A., English, A., Henshaw, K., Mundy, J., Corscadden, D., Chapman, T., Emery, P., Hatton, P., & McGonagle, D. (2008). Synovial fluid mesenchymal stem cells in health and early osteoarthritis: Detection and functional evaluation at the single-cell level. Arthritis and Rheumatism, 58(6), 1731–1740. https://doi.org/10.1002/art.23485

    Article  CAS  PubMed  Google Scholar 

  31. Sekiya, I., Ojima, M., Suzuki, S., Yamaga, M., Horie, M., Koga, H., Tsuji, K., Miyaguchi, K., Ogishima, S., Tanaka, H., & Muneta, T. (2012). Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. Journal of Orthopaedic Research, 30(6), 943–949. https://doi.org/10.1002/jor.22029

    Article  PubMed  Google Scholar 

  32. Jones, E. A., English, A., Henshaw, K., Kinsey, S. E., Markham, A. F., Emery, P., & McGonagle, D. (2004). Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis and Rheumatism, 50(3), 817–827. https://doi.org/10.1002/art.20203

    Article  PubMed  Google Scholar 

  33. Revell, P. A., Al-Saffar, N., Fish, S., & Osei, D. (1995). Extracellular matrix of the synovial intimal cell layer. Annals of the Rheumatic Diseases, 54(5), 404–407. https://doi.org/10.1136/ard.54.5.404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neybecker, P., Henrionnet, C., Pape, E., Grossin, L., Mainard, D., Galois, L., Loeuille, D., Gillet, P., & Pinzano, A. (2020). Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid. Stem Cell Research and Therapy, 11(1), 316. https://doi.org/10.1186/s13287-020-01786-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mizuno, M., Katano, H., Mabuchi, Y., Ogata, Y., Ichinose, S., Fujii, S., Otabe, K., Komori, K., Ozeki, N., Koga, H., Tsuji, K., Akazawa, C., Muneta, T., & Sekiya, I. (2018). Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions. Stem Cell Research and Therapy, 9(1), 123. https://doi.org/10.1186/s13287-018-0870-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hatsushika, D., Muneta, T., Nakamura, T., Horie, M., Koga, H., Nakagawa, Y., et al. (2014). Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthritis and Cartilage, 22(7), 941–950. https://doi.org/10.1016/j.joca.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  37. Futami, I., Ishijima, M., Kaneko, H., Tsuji, K., Ichikawa-Tomikawa, N., Sadatsuki, R., Muneta, T., Arikawa-Hirasawa, E., Sekiya, I., & Kaneko, K. (2012). Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PLoS ONE, 7(9), e45517. https://doi.org/10.1371/journal.pone.0045517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaplan, J. M., Youd, M. E., & Lodie, T. A. (2011). Immunomodulatory activity of mesenchymal stem cells. Current Stem Cell Research and Therapy, 6(4), 297–316. https://doi.org/10.2174/157488811797904353

    Article  CAS  PubMed  Google Scholar 

  39. Herrero, C., & Pérez-Simón, J. A. (2010). Immunomodulatory effect of mesenchymal stem cells. Brazilian Journal of Medical and Biological Research, 43(5), 425–430. https://doi.org/10.1590/s0100-879x2010007500033

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, X., Zhao, Y., Sun, X., Xing, Y., Wang, X., & Yang, Q. (2020). Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis. Frontiers in Bioengineering and Biotechnology, 8, 575057. https://doi.org/10.3389/fbioe.2020.575057

    Article  PubMed  PubMed Central  Google Scholar 

  41. Noronha, N. C., Mizukami, A., Caliári-Oliveira, C., Cominal, J. G., Rocha, J. L. M., Covas, D. T., Swiech, K., & Malmegrim, K. C. R. (2019). Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Research and Therapy, 10(1), 131. https://doi.org/10.1186/s13287-019-1224-y.Erratum.In:StemCellResTher.2019;10(1):132

    Article  PubMed  Google Scholar 

  42. Wang, M., Yuan, Q., & Xie, L. (2018). Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells International, 2018, 3057624. https://doi.org/10.1155/2018/3057624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bochev, I., Elmadjian, G., Kyurkchiev, D., Tzvetanov, L., Altankova, I., Tivchev, P., & Kyurkchiev, S. (2008). Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biology International, 32(4), 384–393. https://doi.org/10.1016/j.cellbi.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  44. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822. https://doi.org/10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  45. Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4), 1484–1490. https://doi.org/10.1182/blood-2005-07-2775

    Article  CAS  PubMed  Google Scholar 

  46. Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24(1), 74–85. https://doi.org/10.1634/stemcells.2004-0359

    Article  PubMed  Google Scholar 

  47. Gao, F., Chiu, S. M., Motan, D. A., Zhang, Z., Chen, L., Ji, H. L., Tse, H. F., Fu, Q. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death and Disease, 7(1), e2062. https://doi.org/10.1038/cddis.2015.327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bifari, F., Lisi, V., Mimiola, E., Pasini, A., & Krampera, M. (2008). Immune modulation by mesenchymal stem cells. Transfusion Medicine and Hemotherapy, 35(3), 194–204. https://doi.org/10.1159/000128968

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ozeki, N., Muneta, T., Koga, H., Nakagawa, Y., Mizuno, M., Tsuji, K., Mabuchi, Y., Akazawa, C., Kobayashi, E., Matsumoto, K., Futamura, K., Saito, T., & Sekiya, I. (2016). Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis Cartilage, 24(6), 1061–1070. https://doi.org/10.1016/j.joca.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  50. Murata, Y., Uchida, S., Utsunomiya, H., Hatakeyama, A., Nakashima, H., Chang, A., Sekiya, I., & Sakai, A. (2018). Synovial mesenchymal stem cells derived from the cotyloid fossa synovium have higher self-renewal and differentiation potential than those from the paralabral synovium in the hip joint. American Journal of Sports Medicine, 46(12), 2942–2953. https://doi.org/10.1177/0363546518794664

    Article  Google Scholar 

  51. Utsunomiya, H., Uchida, S., Sekiya, I., Sakai, A., Moridera, K., & Nakamura, T. (2013). Isolation and characterization of human mesenchymal stem cells derived from shoulder tissues involved in rotator cuff tears. American Journal of Sports Medicine, 41(3), 657–668. https://doi.org/10.1177/0363546512473269

    Article  Google Scholar 

  52. Fernandes, T. L., Kimura, H. A., Pinheiro, C. C. G., Shimomura, K., Nakamura, N., Ferreira, J. R., Gomoll, A. H., Hernandez, A. J., & Bueno, D. F. (2018). Human synovial mesenchymal stem cells good manufacturing practices for articular cartilage regeneration. Tissue Engineering. Part C, Methods, 24(12), 709–716. https://doi.org/10.1089/ten.TEC.2018.0219

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, J., Huang, Y., Song, J., Li, X., Zhang, X., Zhou, Z., Chen, D., Ma, P. X., Peng, W., Wang, W., & Zhou, G. (2018). Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomaterialia, 79, 202–215. https://doi.org/10.1016/j.actbio.2018.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suzuki, S., Mizuno, M., Sakamaki, Y., et al. (2020). Morphological changes in synovial mesenchymal stem cells during their adhesion to the meniscus. Laboratory Investigation, 100, 916–927. https://doi.org/10.1038/s41374-020-0421-8

    Article  PubMed  Google Scholar 

  55. Shimomura, K., Yasui, Y., Koizumi, K., Chijimatsu, R., Hart, D. A., Yonetani, Y., et al. (2018). First-in-human pilot study of implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells for repair of knee chondral lesions. American Journal of Sports Medicine, 46, 2384–2393. https://doi.org/10.1177/0363546518781825

    Article  Google Scholar 

  56. Zeng, N., Yan, Z. P., Chen, X. Y., & Ni, G. X. (2020). Infrapatellar fat pad and knee osteoarthritis. Aging and Disease, 11(5), 1317–1328. https://doi.org/10.14336/AD.2019.1116

    Article  PubMed  PubMed Central  Google Scholar 

  57. Favero, M., El-Hadi, H., Belluzzi, E., Granzotto, M., Porzionato, A., Sarasin, G., Rambaldo, A., Iacobellis, C., Cigolotti, A., Fontanella, C. G., Natali, A., Ramonda, R., Ruggieri, P., De Caro, R., Vettor, R., Rossato, M., & Macchi, V. (2017). Infrapatellar fat pad features in osteoarthritis: A histopathological and molecular study. Rheumatology (Oxford), 56(10), 1784–1793. https://doi.org/10.1093/rheumatology/kex287

    Article  CAS  Google Scholar 

  58. Eymard, F., Pigenet, A., Citadelle, D., Tordjman, J., Foucher, L., Rose, C., Flouzat Lachaniette, C. H., Rouault, C., Clément, K., Berenbaum, F., Chevalier, X., & Houard, X. (2017). Knee and hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: A specific phenotype for a central player in osteoarthritis. Annals of the Rheumatic Diseases, 76(6), 1142–1148. https://doi.org/10.1136/annrheumdis-2016-210478

    Article  CAS  PubMed  Google Scholar 

  59. Belluzzi, E., Stocco, E., Pozzuoli, A., Granzotto, M., Porzionato, A., Vettor, R., De Caro, R., Ruggieri, P., Ramonda, R., Rossato, M., Favero, M., & Macchi, V. (2019). Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain. BioMed Research International, 2019, 6390182. https://doi.org/10.1155/2019/6390182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Greif, D. N., Kouroupis, D., Murdock, C. J., Griswold, A. J., Kaplan, L. D., Best, T. M., & Correa, D. (2020). Infrapatellar fat pad/synovium complex in early-stage knee osteoarthritis: potential new target and source of therapeutic mesenchymal stem/stromal cells. Frontiers in Bioengineering and Biotechnology, 8, 860. https://doi.org/10.3389/fbioe.2020.00860

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jiang, L. F., Fang, J. H., & Wu, L. D. (2019). Role of infrapatellar fat pad in pathological process of knee osteoarthritis: Future applications in treatment. World Journal of Clinical Cases, 7(16), 2134–2142. https://doi.org/10.12998/wjcc.v7.i16.2134

    Article  PubMed  PubMed Central  Google Scholar 

  62. Archer, C. W., Dowthwaite, G. P., & Francis-West, P. (2003). Development of synovial joints. Birth Defects Research. Part C, Embryo Today, 69(2), 144–155. https://doi.org/10.1002/bdrc.10015

    Article  CAS  PubMed  Google Scholar 

  63. Shintani, N., Kurth, T., & Hunziker, E. B. (2007). Expression of cartilage-related genes in bovine synovial tissue. Journal of Orthopaedic Research, 25(6), 813–819. https://doi.org/10.1002/jor.20345

    Article  CAS  PubMed  Google Scholar 

  64. Otero, M., & Goldring, M. B. (2007). Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Research Therapy, 9(5), 220. https://doi.org/10.1186/ar2292 Erratum in Arthritis Research Therapy 2008;10(1):401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pei, M., Luo, J., & Chen, Q. (2008). Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins. Osteoarthritis Cartilage, 16(9), 1110–1117. https://doi.org/10.1016/j.joca.2007.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kangari, P., Talaei-Khozani, T., Razeghian-Jahromi, I., & Razmkhah, M. (2020). Mesenchymal stem cells: Amazing remedies for bone and cartilage defects. Stem Cell Research and Therapy, 11(1), 492. https://doi.org/10.1186/s13287-020-02001-1

    Article  PubMed  PubMed Central  Google Scholar 

  67. Loebel, C., & Burdick, J. A. (2018). Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell, 22(3), 325–339. https://doi.org/10.1016/j.stem.2018.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bobick, B. E., Chen, F. H., Le, A. M., & Tuan, R. S. (2009). Regulation of the chondrogenic phenotype in culture. Birth Defects Research. Part C, Embryo Today, 87(4), 351–371. https://doi.org/10.1002/bdrc.20167

    Article  CAS  PubMed  Google Scholar 

  69. Archer, C. W., & Francis-West, P. (2003). The chondrocyte. International Journal of Biochemistry and Cell Biology, 35(4), 401–404. https://doi.org/10.1016/s1357-2725(02)00301-1

    Article  CAS  PubMed  Google Scholar 

  70. Kim, Y. J., Kim, H. J., & Im, G. I. (2008). PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochemical and Biophysical Research Communications, 373(1), 104–108. https://doi.org/10.1016/j.bbrc.2008.05.183

    Article  CAS  PubMed  Google Scholar 

  71. Lefebvre, V., & Dvir-Ginzberg, M. (2017). SOX9 and the many facets of its regulation in the chondrocyte lineage. Connective Tissue Research, 58(1), 2–14. https://doi.org/10.1080/03008207.2016.1183667

    Article  CAS  PubMed  Google Scholar 

  72. Kozhemyakina, E., Lassar, A. B., & Zelzer, E. (2015). A pathway to bone: Signaling molecules and transcription factors involved in chondrocyte development and maturation. Development, 142(5), 817–831. https://doi.org/10.1242/dev.105536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goldring, M. B., Tsuchimochi, K., & Ijiri, K. (2006). The control of chondrogenesis. Journal of Cellular Biochemistry, 97(1), 33–44. https://doi.org/10.1002/jcb.20652

    Article  CAS  PubMed  Google Scholar 

  74. Cancedda, R., Castagnola, P., Cancedda, F. D., Dozin, B., & Quarto, R. (2000). Developmental control of chondrogenesis and osteogenesis. International Journal of Developmental Biology, 44(6), 707–714.

    CAS  Google Scholar 

  75. Yoon, Y. M., Oh, C. D., Kang, S. S., & Chun, J. S. (2000). Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling. Journal of Bone and Mineral Research, 15(11), 2197–2205. https://doi.org/10.1359/jbmr.2000.15.11.2197

    Article  CAS  PubMed  Google Scholar 

  76. Bobick, B. E., & Kulyk, W. M. (2008). Regulation of cartilage formation and maturation by mitogen-activated protein kinase signaling. Birth Defects Research. Part C, Embryo Today, 84(2), 131–154. https://doi.org/10.1002/bdrc.20126

    Article  CAS  PubMed  Google Scholar 

  77. De Bari, C., Dell’Accio, F., Vandenabeele, F., Vermeesch, J. R., Raymackers, J. M., & Luyten, F. P. (2003). Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. Journal of Cell Biology, 160(6), 909–918. https://doi.org/10.1083/jcb.200212064

    Article  CAS  Google Scholar 

  78. Mochizuki, T., Muneta, T., Sakaguchi, Y., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2006). Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis and Rheumatism, 54(3), 843–853. https://doi.org/10.1002/art.21651

    Article  CAS  PubMed  Google Scholar 

  79. Koga, H., Muneta, T., Nagase, T., Nimura, A., Ju, Y. J., Mochizuki, T., & Sekiya, I. (2008). Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell and Tissue Research, 333(2), 207–215. https://doi.org/10.1007/s00441-008-0633-5

    Article  PubMed  Google Scholar 

  80. Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113(6), 685–700. https://doi.org/10.1016/s0092-8674(03)00432-x

    Article  CAS  PubMed  Google Scholar 

  81. Miyamoto, C., Matsumoto, T., Sakimura, K., & Shindo, H. (2007). Osteogenic protein-1 with transforming growth factor-beta1: Potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro. Journal of Orthopaedic Science, 12(6), 555–561. https://doi.org/10.1007/s00776-007-1176-4

    Article  CAS  PubMed  Google Scholar 

  82. Nishimura, K., Solchaga, L. A., Caplan, A. I., Yoo, J. U., Goldberg, V. M., & Johnstone, B. (1999). Chondroprogenitor cells of synovial tissue. Arthritis and Rheumatism, 42(12), 2631–2637. https://doi.org/10.1002/1529-0131(199912)42:12%3c2631::AID-ANR18%3e3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  83. Pei, M., He, F., & Vunjak-Novakovic, G. (2008). Synovium-derived stem cell-based chondrogenesis. Differentiation, 76(10), 1044–1056. https://doi.org/10.1111/j.1432-0436.2008.00299.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakimura, K., Matsumoto, T., Miyamoto, C., Osaki, M., & Shindo, H. (2006). Effects of insulin-like growth factor I on transforming growth factor beta1 induced chondrogenesis of synovium-derived mesenchymal stem cells cultured in a polyglycolic acid scaffold. Cells, Tissues, Organs, 183(2), 55–61. https://doi.org/10.1159/000095509

    Article  CAS  PubMed  Google Scholar 

  85. Shintani, N., & Hunziker, E. B. (2007). Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue. Arthritis and Rheumatism, 56(6), 1869–1879. https://doi.org/10.1002/art.22701

    Article  CAS  PubMed  Google Scholar 

  86. Schmal, H., Kowal, J. M., Kassem, M., Seidenstuecker, M., Bernstein, A., Böttiger, K., Xiong, T., Südkamp, N. P., & Kubosch, E. J. (2018). Comparison of regenerative tissue quality following matrix-associated cell implantation using amplified chondrocytes compared to synovium-derived stem cells in a rabbit model for cartilage lesions. Stem Cells International, 2018, 4142031. https://doi.org/10.1155/2018/4142031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pei, M., He, F., Boyce, B. M., & Kish, V. L. (2009). Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage, 17(6), 714–722. https://doi.org/10.1016/j.joca.2008.11.017

    Article  CAS  PubMed  Google Scholar 

  88. Li, H., Qian, J., Chen, J., Zhong, K., & Chen, S. (2016). Osteochondral repair with synovial membrane-derived mesenchymal stem cells. Molecular Medicine Reports, 13(3), 2071–2077. https://doi.org/10.3892/mmr.2016.4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, J. C., Min, H. J., Park, H. J., Lee, S., Seong, S. C., & Lee, M. C. (2013). Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy, 29(6), 1034–1046. https://doi.org/10.1016/j.arthro.2013.02.026

    Article  PubMed  Google Scholar 

  90. Shimomura, K., Moriguchi, Y., Ando, W., Nansai, R., Fujie, H., Hart, D. A., Gobbi, A., Kita, K., Horibe, S., Shino, K., Yoshikawa, H., & Nakamura, N. (2014). Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Engineering Part A, 20(17–18), 2291–2304. https://doi.org/10.1089/ten.tea.2013.0414

    Article  CAS  PubMed  Google Scholar 

  91. To, K., Zhang, B., Romain, K., Mak, C., & Khan, W. (2019). Synovium-Derived mesenchymal stem cell transplantation in cartilage regeneration: A PRISMA review of in vivo studies. Frontiers in Bioengineering and Biotechnology, 7, 314. https://doi.org/10.3389/fbioe.2019.00314

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sekiya, I., Muneta, T., Horie, M., & Koga, H. (2015). Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clinical Orthopaedics and Related Research, 473(7), 2316–2326. https://doi.org/10.1007/s11999-015-4324-8

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kubosch, E. J., Lang, G., Furst, D., Kubosch, D., Izadpanah, K., Rolauffs, B., Sudkamp, N. P., & Schmal, H. (2018). The potential for synovium-derived stem cells in cartilage repair. Current Stem Cell Research and Therapy, 13(3), 174–184. https://doi.org/10.2174/1574888X12666171002111026

    Article  CAS  PubMed  Google Scholar 

  94. Kohno, Y., Mizuno, M., Ozeki, N., Katano, H., Komori, K., Fujii, S., Otabe, K., Horie, M., Koga, H., Tsuji, K., Matsumoto, M., Kaneko, H., Takazawa, Y., Muneta, T., & Sekiya, I. (2017). Yields and chondrogenic potential of primary synovial mesenchymal stem cells are comparable between rheumatoid arthritis and osteoarthritis patients. Stem Cell Research and Therapy, 8(1), 115. https://doi.org/10.1186/s13287-017-0572-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kubosch, E. J., Heidt, E., Niemeyer, P., Bernstein, A., Südkamp, N. P., & Schmal, H. (2017). In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation—A comparison: Synovial stem cells as an alternative cell source for autologous chondrocyte implantation. International Orthopaedics, 41(5), 991–998. https://doi.org/10.1007/s00264-017-3400-y

    Article  PubMed  Google Scholar 

  96. Zhu, Y., Wang, Y., Zhao, B., Niu, X., Hu, B., Li, Q., Zhang, J., Ding, J., Chen, Y., & Wang, Y. (2017). Comparison of exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells and synovial membrane-derived mesenchymal stem cells for the treatment of osteoarthritis. Stem Cell Research and Therapy, 8(1), 64. https://doi.org/10.1186/s13287-017-0510-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chung, C., & Burdick, J. A. (2008). Engineering cartilage tissue. Advanced Drug Delivery Reviews, 60(2), 243–262. https://doi.org/10.1016/j.addr.2007.08.027

    Article  CAS  PubMed  Google Scholar 

  98. Pei, M., He, F., Kish, V. L., & Vunjak-Novakovic, G. (2008). Engineering of functional cartilage tissue using stem cells from synovial lining: A preliminary study. Clinical Orthopaedics and Related Research, 466(8), 1880–1889. https://doi.org/10.1007/s11999-008-0316-2

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ando, W., Tateishi, K., Hart, D. A., Katakai, D., Tanaka, Y., Nakata, K., Hashimoto, J., Fujie, H., Shino, K., Yoshikawa, H., & Nakamura, N. (2007). Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials, 28(36), 5462–5470. https://doi.org/10.1016/j.biomaterials.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  100. Ando, W., Tateishi, K., Katakai, D., Hart, D. A., Higuchi, C., Nakata, K., Hashimoto, J., Fujie, H., Shino, K., Yoshikawa, H., & Nakamura, N. (2008). In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: Biological and mechanical properties and further chondrogenic potential. Tissue Engineering Part A, 14(12), 2041–2049. https://doi.org/10.1089/ten.tea.2008.0015

    Article  CAS  PubMed  Google Scholar 

  101. Koga, H., Shimaya, M., Muneta, T., Nimura, A., Morito, T., Hayashi, M., Suzuki, S., Ju, Y. J., Mochizuki, T., & Sekiya, I. (2008). Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Research and Therapy, 10(4), R84. https://doi.org/10.1186/ar2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sakao, K., Takahashi, K. A., Arai, Y., Inoue, A., Tonomura, H., Saito, M., Yamamoto, T., Kanamura, N., Imanishi, J., Mazda, O., & Kubo, T. (2008). Induction of chondrogenic phenotype in synovium-derived progenitor cells by intermittent hydrostatic pressure. Osteoarthritis Cartilage, 16(7), 805–814. https://doi.org/10.1016/j.joca.2007.10.021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Muthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyaraman, M., Muthu, S., Jeyaraman, N. et al. Synovium Derived Mesenchymal Stromal Cells (Sy-MSCs): A Promising Therapeutic Paradigm in the Management of Knee Osteoarthritis . JOIO 56, 1–15 (2022). https://doi.org/10.1007/s43465-021-00439-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-021-00439-w

Keywords

Navigation