Skip to main content
Log in

Review on role of electrical discharge drilling methods in fabricating micro holes: formation mechanism, defects characterization and mitigation strategies

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Electrical discharge drilling (EDD), a non-contact manufacturing technology that brings the potential to fabricate microholes at low cost and relatively high efficiency, has aroused extensive attention at home and abroad. However, the surface/subsurface defects and forming accuracy inherited from the EDD process can significantly impede the mechanical properties and weaken the usage performance of as-micro holes parts and components, probably challenging this process’s reliability and reproducibility. The advancement of simulated technique and characterization detection currently opens up a more a more intuitive and deeper research of micro holes machined by the EDD process. Given that, the paper systematically states the material removal mechanism, debris escaping path, surface/subsurface defects formation, mitigation strategies and improved measures of micro holes fabricated by the EDD process. Consequently, based on current limitations and challenges, hybrid process and theoretical breakthrough play a significant role in future research on the microhole fabricated by the EDD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ρ :

Fluid density

k :

Intermediate variable of the velocity scale

ε :

Intermediate variable of the length scale

u i :

Velocity vector in the direction i

x i :

Displacement in direction i

x j :

Displacement in direction j

t :

Time

μ :

Dynamic viscosity of fluid

G k :

Generation of turbulent kinetic energy

G b :

Turbulence kinetic energy generated by buoyancy

C 1 ε, C 2 ε, C 3 ε :

Constants

α k :

Turbulence Prandtl numbers of k equation

α ε :

Turbulence prandtl numbers of ε equation

R ε :

Additional term

S k, S ε :

Source items

u :

Fluid phase velocity

u p :

Discrete phase velocity

g i :

Component of the acceleration of gravity in the direction i

w 0 :

Tool wear per unit tool travel

W 0 :

Measured tool wear after drilling the pilot hole

EDD:

Electrical discharge drilling

TEHECDD:

Tube electrode high speed electro chemical discharge drilling

SQ:

Surface quality

SD:

Subsurface damage

DA:

Dimensional accuracy

TA:

Taper angle

MRR:

Material removal rate

DG:

Discharge gap

1D-UVAM:

One-dimensional UVAM

MESS:

Magnetic suspension spindle system

FRAC:

The fixed reference axial compensation strategy

R-μEDM:

Reverse micro electrical discharge machining

3D-UVAM:

Three- dimensional UVAM

ρ p :

Particle density

d p :

Particle diameter

C D :

Drag coefficient

Re:

Particle Reynolds number

Z 1 :

Top position of the electrode before machining

Z 2 :

Top position of the electrode after machining

Z 0 :

Top position of the field of electrode image

L 1 :

Electrode length before machining

L 2 :

Electrode length after machining

P 1 :

Length of electrode image before machining

P 2 :

Length of ectrode image after machining

ΔL :

Length of front wear

X'1 :

Exact tool travel distance for the first hole

X'2 :

Exact tool travel distance for the second hole

X'3 :

Exact tool travel distance for the third hole

X'n :

Exact tool travel distance for nth hole

Z :

Intended depth

EDM:

Electrical discharge machining

CFD:

Computational fluid dynamics

SR:

Surface roughness

RLT:

Recast layer thickness

OV:

Overcut

TWR:

Tool wear rate

UCV:

Ultrasonic circular vibration

DS:

Discharge stability

2D-UVAM:

Two-dimensional UVAM

ECM:

Electrical chemical machining

UVAM:

The ultrasonic vibration-assisted machining

US-EDM:

Ultrasonic assisted dry electrical discharge machining

UVAM-EDM:

Ultrasonic vibration-assisted electrical discharge machining

References

  1. Wang W, Li L, Liu Z, Liu X, Bai X, Zang M, Zhang H. Research progress on improve quality of micro-hole processed by electrical discharge machining. Ordnance Mater Sci Eng. 2023;46:140–6.

    Article  Google Scholar 

  2. Zhang Y. Fundamental research on electrochemical and discharge machining for micro hole. Nanjing: Nanjing University of Aeronautics and Astronautics; 2018.

    Google Scholar 

  3. Ying R, Zeng L, Gu D. Review of micro-hole machining technology. Mach Tool Hydraul. 2008;36:144–7.

    Google Scholar 

  4. Chen M, Zheng X, Dong D, Huang L, Wang X. Investigation of tool wear mechanism and tool geometry optimization in drilling of PCB fixture hole. Circuit World. 2013;39:195–203.

    Article  Google Scholar 

  5. Li C. Characteristics study of deep hole drilling tool system. X’ian: X’ian University of Technology; 2008.

    Google Scholar 

  6. Ma ZL, Wang QH, Liang YD, Cui ZJ, Meng FW, Chen LY. The mechanism and machinability of laser-assisted machining zirconia ceramics. Ceram Int. 2023;49(11):16971–84.

    Article  Google Scholar 

  7. Lou ZZ, Yan YD, Wang JQ, Zhang AX, Cui HL, Li C, Geng YQ. Exploring the structural color of micro-nano composite gratings with FDTD simulation and experimental validation. Opt Express. 2024;32(2):2432–51.

    Article  Google Scholar 

  8. Ma ZL, Wang QH, Chen H, Chen LY, Sheng Q, Wang ZX, Yu TB. A grinding force predictive model and experimental validation for the laser-assisted grinding (LAG) process of zirconia ceramic. J Mater Process Technol. 2022;302: 117492.

    Article  Google Scholar 

  9. Xiang DD, Liu Y, Yu T, Wang D, Leng X, Wang K, Liu L, Pan J, Yao S, Chen Z. Review on wear resistance of laser cladding high-entropy alloy coatings. J Mater Process Technol. 2024;28:911–34.

    Google Scholar 

  10. Lohrengel MM, Rosenkranz C. Micro-electrochemical surface and product investigations during electrochemical machining (ECM) in NaNO3. Corros Sci. 2005;47:785–94.

    Article  Google Scholar 

  11. Kunieda M, Mizugai K, Watanabe S, Shibuya N, Iwamoto N. Electrochemical micromachining using flat electrolyte jet. CIRP Ann Manuf Technol. 2011;60:251–4.

    Article  Google Scholar 

  12. Jia J, Qu N, Fang X, Zeng Y. Investigation on electro stream drilling of micro-hole. Electromach Mould. 2011;2:129–32.

    Google Scholar 

  13. Gong S, Sun Y. Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining. J Manuf Process. 2022;79:126–41.

    Article  Google Scholar 

  14. Philip JT, Mathew J, Kuriachen BB. Transition from EDM to PMEDM-impact of suspended particulates in the dielectric on Ti6Al4V and other distinct material surfaces: a review. J Manuf Process. 2021;64:1105–42.

    Article  Google Scholar 

  15. Yao S, Jin LY, Gong YD, Wen XL, Yin GQ, Wen Q, Tang BJ. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. J Manuf Process. 2022;73:799–814.

    Article  Google Scholar 

  16. Rahim MZ, Li G, Ding S, Mo J, Brandt M. Electrical discharge grinding versus abrasive grinding in polycrystalline diamond machining-tool quality and performance analysis. Int J Adv Manuf Technol. 2016;85:263–77.

    Article  Google Scholar 

  17. Zhang Y, Xu Z, Zhu Y, Zhu D. Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling. J Mater Process Technol. 2016;231:38–49.

    Article  Google Scholar 

  18. Li Z, Bai J, Cao Y, Wang Y, Zhu G. Fabrication of microelectrode with large aspect ratio and precision machining of micro-hole array by micro-EDM. J Mater Process Technol. 2019;268:70–9.

    Article  Google Scholar 

  19. Liew PJ, Yan J, Kuriyagawa T. Fabrication of deep micro-holes in reaction-bonded SIC by ultrasonic cavitation assisted Micro-EDM. Int J Mach Tool Manufact. 2014;76:13–20.

    Article  Google Scholar 

  20. Gong S, Sun Y, Jin L, Su Z. Experimental study on fabricating micro-holes in DD5 single-crystal nickel-based superalloy using electrical discharge drilling. J Archiv Civ Mech Eng. 2020;20:87.

    Article  Google Scholar 

  21. Sun Y, Gong Y, Wen X, Xin B. Evaluation of dimensional accuracy and surface integrity of cylindrical array microelectrodes and cylindrical array micro holes machined by EDM. J Archiv Civ Mech Eng. 2022;22:46.

    Article  Google Scholar 

  22. Kumar R, Kumar A, Singh I. Electric discharge drilling of micro holes in CFRP laminates. J Mater Process Technol. 2018;259:150–8.

    Article  Google Scholar 

  23. Li MH. Theoretical foundation of electrical discharge machining. Beijing: National Defense of Industry Press; 1989. p. 26–7.

    Google Scholar 

  24. Huang S, Gao S, Huang C, Huang H. Nanoscale removal mechanisms in abrasive machining of brittle solids. Diam Abras Eng. 2022;42:257–67.

    Google Scholar 

  25. Qu SS, Yao P, Gong YD, Dk Chu, Yang YY, Li CW. Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology. J Clean Prod. 2022;366:132898.

    Article  Google Scholar 

  26. Piao YC, Li C, Hu YX, Cui HL, Luo XL, Geng YQ, Zhang FH. Nanoindentation induced anisotropy of deformation and damage behaviors of MgF2 crystals. J Market Res. 2024;28:4615–25.

    Google Scholar 

  27. Li C, Hu YX, Wei ZZ, Wu CJ, Peng YF, Zhang FH, Geng YQ. Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding. Int J Extreme Manuf. 2024;6(2): 025103.

    Article  Google Scholar 

  28. Ma L, Cai C, Tan Y, Gong Y, Zhu L. Theoretical model of transverse and longitudinal surface roughness and study on brittle-ductile transition mechanism for turning Fluorophlogopite ceramic. Int J Mech Sci. 2019;150:715–26.

    Article  Google Scholar 

  29. Shao W, Zhang T. Process parameters optimization of high-speed milling 7075 aluminum alloy with nano-diamond coated tool. Diam Abras Eng. 2022;42(4):473–80.

    MathSciNet  Google Scholar 

  30. Zhang Y, Xu Z, Zhu Y, Zhu D. Machining of a film-cooling hole in a single-crystal superalloy by high-speed electrochemical discharge drilling. Chin J Aeronaut. 2016;29(2):560–70.

    Article  Google Scholar 

  31. Zhang Y, Xie B. Investigation on hole diameter non-uniformity of hole arrays by ultrasonic vibration-assisted EDM. Int J Adv Manuf Technol. 2021;112:3083–91.

    Article  Google Scholar 

  32. Li Z, Bai J. Influence of alternating side gap on micro-hole machining performances in micro-EDM. Int J Adv Manuf Technol. 2018;94:979–89.

    Article  Google Scholar 

  33. Chu Z, Zhao W, Gu L. Effect of electrode jump motion on machining debris concentration. J Mech Eng. 2013;49:185–92.

    Article  Google Scholar 

  34. Zhang L, Wang Y, Wang Z. Gap flow simulation for micro-EDM deep-small hole machining with flatted electrod. Electromach Mould. 2011;3:33–7.

    Google Scholar 

  35. Kim D, Kim YS, Song KY, Ahn SH, Chu CN. Kerosene supply effect on performance of aluminum nitride micro-electrical discharge machining. Int J Precis Eng Manuf. 2022;23:581–91.

    Article  Google Scholar 

  36. Wang K, Zhang Q, Zhu G, Liu Q, Huang Y. Experimental study on micro electrical discharge machining with helical electrode. Int J Adv Manuf Technol. 2017;93:2639–45.

    Article  Google Scholar 

  37. Liu H, Bai J. The tool electrode wear and gap fluid field simulation analysis in micro-EDM drilling of micro-hole array. Procedia CIRP. 2020;95:220–5.

    Article  Google Scholar 

  38. Feng G, Yang X, Chi G. Experimental and simulation study on micro hole machining in EDM with high-speed tool electrode rotation. Int J Adv Manuf Technol. 2019;101:367–75.

    Article  Google Scholar 

  39. Tanjilul M, Ahmed A, Kumar AS, Rahman M. A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. J Mater Process Technol. 2018;255:263–74.

    Article  Google Scholar 

  40. Maity K, Choubey M. Modeling and process simulation of vibration assisted workpiece in micro-EDM using FEM. World J Eng. 2016;13(3):242–5.

    Article  Google Scholar 

  41. Liu Y, Chang H, Zhang W, Ma F, Sha Z, Zhang S. Study on gap glow field simulation in small hole machining of ultrasonic assisted EDM. Mater Sci Eng. 2017;280: 012009.

    Google Scholar 

  42. Cetin S, Okada A, Uno Y. Effect of debris distribution on wall concavity in deep hole EDM. JSME Int J. 2004;47:553–5.

    Article  Google Scholar 

  43. Jia ZY, Zheng XY, Wang FJ, Liu W. Research on flow state of interelectrode working fluid in micro-EDM. J Dalian Univer Technol. 2010;50:188–93.

    Google Scholar 

  44. Xie B, Zhang Y, Zhang J, Dai Y, Liu X. Flow field simulation and experimental investigation of ultrasonic vibration assisted EDM holes array. Int J Control Autom. 2015;8:419–24.

    Article  Google Scholar 

  45. Wang J, Wang YG, Zhao FL. Simulation of debris movement in micro electrical discharge machining of deep holes. Mater Sci Forum. 2009;626:267–72.

    Article  Google Scholar 

  46. Liu H, Bai J, Zhang B, Cao Y, Hou S, Zhou Z. Breakthrough detection and servo control for micro-hole array EDM drilling. Int J Adv Manuf Technol. 2022;119:615–29.

    Article  Google Scholar 

  47. Jeong YH, Min BK. Geometry prediction of EDM-drilled holes and tool electrode shapes of micro-EDM process using simulation. Int J Mach Tool Manuf. 2007;47:1817–26.

    Article  Google Scholar 

  48. Li H, Wang Z, Wang Y, Liu H, Bai Y. Micro-EDM drilling of ZrB2-SiC-graphite composite using micro sheet-cylinder tool electrode. Int J Adv Manuf Technol. 2017;92:2033–41.

    Article  Google Scholar 

  49. Chung DK, Shin HS, Kim BH, Park MS, Chu CN. Surface finishing of micro EDM holes using deionized water. Micromech Microeng. 2009;19: 045025.

    Article  Google Scholar 

  50. Jahan MP, Wong YS, Rahman M. A comparative experimental investigation of deep hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol. 2010;46:1145–60.

    Article  Google Scholar 

  51. Dilip DG, Panda S, Mathew J. Characterization and parametric optimization of micro-hole surfaces in micro-EDM drilling on Inconel 718 superalloy using genetic algorithm. Arab J Sci Eng. 2020;45:5057–74.

    Article  Google Scholar 

  52. Urso GD, Maccarini G, Ravasio C. Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. Int J Adv Manuf Technol. 2016;85:1–13.

    Google Scholar 

  53. Ma G, Yu P, Hou W, Wang L, Xu J. Study on discharge gap of micro-EDM of the micro hole in titanium alloy. In: 2018 IEEE international conference on manipulation manufacturing and measurement on the nanoscale. 2018, pp 253–257

  54. Pradhan B, Masanta M, Sarkar B, Bhattacharyya B. Investigation of electro-discharge micro-machining of titanium super alloy. Int J Adv Manuf Technol. 2009;41(11–12):1094–106.

    Article  Google Scholar 

  55. Jahan MP, Lieh TW, Wong YS, Rahman M. An experimental investigation into the micro-electrodischarge machining behavior of p-type silicon. Int J Adv Manuf Technol. 2011;57:617–37.

    Article  Google Scholar 

  56. Nguyen MD, Rahman M, Wong YS. An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int J Adv Manuf Technol. 2012;58:33–544.

    Article  Google Scholar 

  57. Barman S, Hanumaiah N, Puri AB. Investigation on shape, size, surface quality and elemental characterization of high-aspect-ratio blind micro holes in die sinking micro EDM. Int J Adv Manuf Technol. 2015;76:115–26.

    Article  Google Scholar 

  58. Tamang SK, Natarajan N, Chandrasekaran M. Optimization of EDM process in machining micro holes for improvement of hole quality. J Braz Soc Mech Sci Eng. 2017;39:1277–87.

    Article  Google Scholar 

  59. Maity KP, Singh RK. An optimisation of micro-EDM operation for fabrication of micro-hole. Int J Adv Manuf Technol. 2012;61:1221–9.

    Article  Google Scholar 

  60. Mustafa A, Ulas C, Ahmet H. Optimization of micro-EDM drilling of inconel 718 superalloy. Int J Adv Manuf Technol. 2013;66:1015–25.

    Article  Google Scholar 

  61. Hourmand M, Sarhan AAD, Sayuti M. Characterizing the effects of micro electrical discharge machining parameters on material removal rate during micro EDM drilling of tungsten carbide (WC-Co). IOP Conf Ser Mater Sci Eng. 2017;241: 012005.

    Article  Google Scholar 

  62. Dave HK, Mathai VJ, Desai KP, Raval HK. Studies on quality of micro holes generated on Al 1100 using micro-electro-discharge machining process. Int J Adv Manuf Technol. 2015;76:127–40.

    Article  Google Scholar 

  63. Kliuev M, Boccadoro M, Perez R, DalBo W, Sternimann J, Kuster F, Wegener K. EDM drilling and shaping of cooling holes in Inconel 718 turbine blades. Procedia CIRP. 2016;42:322–7.

    Article  Google Scholar 

  64. Pandey AK, Gautam GD. Grey relational analysis-based genetic algorithm optimization of electrical discharge drilling of Nimonic-90 superalloy. J Br Soc Mech Sci Eng. 2018;40:117.

    Article  Google Scholar 

  65. Urso GD, Merla C. Workpiece and electrode influence on micro-EDM drilling performance. Precis Eng. 2014;38:903–14.

    Article  Google Scholar 

  66. Jahan MP, Wong YS, Rahman M. A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. Mater Process Technol. 2009;209:3956–67.

    Article  Google Scholar 

  67. Teicher U, Muller S, Munzner J, Nestler A. Micro-EDM of carbon fibre-reinforced plastics. Procedia CIRP. 2013;6:320–5.

    Article  Google Scholar 

  68. Park S, Kim G, Lee W, Min BK, Lee SW, Kim TG. Microhole machining on precision CFRP components using electrical discharging machining. In: 20th international conference on composite materials. Copenhagen 2015.

  69. Baghela R, Mali HS. A study on effects of discharge energy on geometric characteristics of high aspect ratio micro-holes on TiN-Al2O3 ceramics. Mater Today Proc. 2018;5:17828–37.

    Article  Google Scholar 

  70. Kuriakose S, Patowari PK, Bhatt J. Effect of micro-EDM machining parameters on the accuracy of micro hole drilling in Zr-based metallic glass. Eng Res Express. 2020;2:015001.

    Article  Google Scholar 

  71. Ahmad JS, Shinde SR. Machinability of carbon/epoxy composites by electrical discharge machining. Int J Mach Mach Mater. 2016;18:3–17.

    Google Scholar 

  72. Ahmad JS. Hole quality and damage in drilling carbon/epoxy composites by electrical discharge machining. Mater Manuf Process. 2016;31:941–50.

    Article  Google Scholar 

  73. Wang D, Zhao WS, Gu L, Kang XM. A study on micro-hole machining of polycrystalline diamond by micro-electrical discharge machining. J Mater Process Technol. 2011;211:3–11.

    Article  Google Scholar 

  74. Pilligrin JC, Asokan P, Jerald J, Kanagaraj G, Mukund Nilakantan J, Nielsen I. Tool speed and polarity effects in micro-EDM drilling of 316L stainless steel. Prod Manuf Res. 2017;5:99–117.

    Google Scholar 

  75. Bissacco G, Valentincic J, Hansen HN, Wiwe BN. Towards the effective tool wear control in micro-EDM milling. Int J Adv Manuf Technol. 2010;47:3–9.

    Article  Google Scholar 

  76. Li G, Natsu W, Yang J, Yu Z. Bubble flushing effect in micro EDM drilling and its relation with debris. J Mater Process Tech. 2022;305:117590.

    Article  Google Scholar 

  77. Li G, Natsu W, Yu Z. Study on quantitative estimation of bubble behavior in micro hole drilling with EDM. Int J Mach Tool Manufact. 2019;146: 103437.

    Article  Google Scholar 

  78. Singh R, Dvivedi A, Kumar P. EDM of high aspect ratio micro-holes on Ti-6Al-4V alloy by synchronizing energy interactions. Mater Manuf Process. 2020;35:1188–203.

    Article  Google Scholar 

  79. Tam HY, Jiang W, Chan KL. A Process investigation for micro-EDM fabrication of through holes in thin copper sheets. Adv Mater Res. 2011;264:1376–82.

    Article  Google Scholar 

  80. Feng X, Xu B, Lei J, Wu X, Luo F, Fu L. Elimination of hole mouth burr in multilayer PCB micro-hole by using micro-EDM. Micromachines. 2021;12:688.

    Article  Google Scholar 

  81. Dong S, Wang Z, Wang Y, Liu H. An experimental investigation of enhancement surface quality of micro-holes for Be-Cu alloys using micro-EDM with multi-diameter electrode and different dielectrics. Procedia CIRP. 2016;42:257–62.

    Article  Google Scholar 

  82. Chung DK, Shin HS, Park MS, Chu CN. Machining characteristics of micro EDM in water using high frequency bipolar pulse. Int J Precis Eng Manuf. 2010;12:195–201.

    Article  Google Scholar 

  83. Uhlmann E, Schimmelpfennig TM, Perfilov I, Streckenbach J, Schweitzer L. Comparative analysis of dry-EDM and conventional EDM for the manufacturing of micro holes in Si3N4-TiN. Procedia CIRP. 2016;42:173–8.

    Article  Google Scholar 

  84. Kibria G, Sarkar B, Pradhan B, Bhattacharyya B. Comparative study of different dielectrics for micro-EDM performance during micro hole machining of Ti-6Al-4V alloy. Int J Adv Manuf Technol. 2010;48:557–70.

    Article  Google Scholar 

  85. Li G, Natsu W. Realization of micro EDM drilling with high machining speed and accuracy by using mist deionized water jet. Precis Eng. 2020;61:136–46.

    Article  Google Scholar 

  86. Sun Z, Chen J, Lu G. A review on electrode compensation methods in micro-EDM. Electromach Mould. 2013;1:1–5.

    Google Scholar 

  87. Masuzawa T. Three-dimensional micro machining by machine tools. CIRP Ann Manuf Technol. 1997;46:621–8.

    Article  Google Scholar 

  88. Yu ZY, Masuzawa T, Fujino M. Micro-EDM for three dimensional cavities-development of uniform wear method. CIRP Ann Manuf Technol. 1998;47(1):169–72.

    Article  Google Scholar 

  89. Yu HL, Luan JJ, Li JZ, Zhang YS, Yu ZY, Guo DM. A new electrode wear compensation method for improving performance in 3D micro EDM milling. J Micromech Microeng. 2010;20:55011.

    Article  Google Scholar 

  90. Nirala CK, Saha P. Precise μEDM-drilling using real-time indirect tool wear compensation. J Mater Process Technol. 2017;240:176–89.

    Article  Google Scholar 

  91. Hou S, Bai J. Electrode wear prediction and offline compensation for micro-EDM drilling through-hole array using geometry simulation. Int J Adv Manuf Technol. 2022;120:6877–89.

    Article  Google Scholar 

  92. Lin C, Li J, Liang S, Zhang Y, Gou J, Liu J, Li Y. Improving the precision of micro-EDM for blind holes in titanium alloy by fixed reference axial compensation. Rev Adv Mater Sci. 2021;60:771–83.

    Article  Google Scholar 

  93. Lee CS, Heo EY, Kim JM, Choi TH, Kim DW. Electrode wear estimation model for EDM drilling. Robot Comput Integr Manuf. 2015;36:70–5.

    Article  Google Scholar 

  94. Chang YF, Chiu ZH. Electrode wear-compensation of electric discharge scanning process using a robust gap-control. Mechatronics. 2004;14:1121–39.

    Article  Google Scholar 

  95. Aligiri E, Yeo SH, Tan PC. A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM. J Mater Process Technol. 2010;210:2292–303.

    Article  Google Scholar 

  96. Mahardika M, Mitsui K. A new method for monitoring micro-electric discharge machining process. Int J Mach Tool Manufact. 2008;148:446–58.

    Article  Google Scholar 

  97. Mahardika M, Tsujimoto T, Mitsui K. A new approach on the determination of ease of machining by EDM processes. Int J Mach Tool Manufact. 2008;7–8:746–60.

    Article  Google Scholar 

  98. Jung JW, Hoon KS, Jeong YH, Min BK, Lee SG. Real-time gap control for micro-EDM: application in a micro factory. Int J Precis Eng Manuf. 2008;9:3–6.

    Google Scholar 

  99. Bissacco G, Hansen HN, Tristo G, Valentincic J. Feasibility of wear compensation in micro EDM milling based on discharge counting and discharge population characterization. CIRP Ann Manuf Technol. 2011;60:231–4.

    Article  Google Scholar 

  100. Tong H, Li Y, Hu M. Experimental research on effects of process parameters on servo scanning 3D micro electrical discharge machining. Chin J Mech Eng. 2012;25:114–21.

    Article  Google Scholar 

  101. Yan MT, Lin SS. Process planning and electrode wear compensation for 3D micro-EDM. Int J Adv Manuf Technol. 2011;53:209–19.

    Article  Google Scholar 

  102. Huang Y, Qixuan X, Liu M, Zhang Q. Prediction of electrode loss in micro-EDM drilling based on discharge time. Int J Adv Manuf Technol. 2021;115:3003–10.

    Article  Google Scholar 

  103. Malayath G, Katta S, Sidpara AM, Deb S. Length-wise tool wear compensation for micro electric discharge drilling of blind holes. Measurement. 2019;134:888–96.

    Article  Google Scholar 

  104. Yan MT, Huang KY, Lo CY. A study on electrode wear sensing and compensation in Micro-EDM using machine vision system. Int J Adv Manuf Technol. 2009;42:1065–73.

    Article  Google Scholar 

  105. Yang H, Ding W, Chen Y, Laporte S, Xu J, Fu Y. Drilling force model for forced low frequency vibration assisted drilling of Ti–6Al–4V titanium alloy. Int J Mach Tool Manufact. 2019;146: 103438.

    Article  Google Scholar 

  106. Liu X, Wu D, Zhang J, Hu X, Cui P. Analysis of surface texturing in radial ultrasonic vibration-assisted turning. J Mater Process Technol. 2019;267:186–95.

    Article  Google Scholar 

  107. Li G, Yu Z, Song J, Li C, Li J, Natsu W. Material removal modes of quartz crystals by micro USM. Procedia CIRP. 2016;42:842–6.

    Article  Google Scholar 

  108. Wang H, Hu Y, Cong W, Hu Z. A mechanistic model on feeding-directional cutting force in surface grinding of CFRP composites using rotary ultrasonic machining with horizontal ultrasonic vibration. Int J Mech Sci. 2019;155:450–60.

    Article  Google Scholar 

  109. Okada A, Yamaguchi A, Ota K. Improvement of curved hole EDM drilling performance using suspended ball electrode by workpiece vibration. CIRP Ann Manuf Technol. 2017;66:189–92.

    Article  Google Scholar 

  110. Yang Z, Zhu L, Zhang G, Ni G, Lin B. Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tool Manufact. 2020;156: 103594.

    Article  Google Scholar 

  111. Zhang C, Song Y. Design and kinematic analysis of a novel decoupled 3D ultrasonic elliptical vibration assisted cutting mechanism. Ultrasonics. 2019;95:79–94.

    Article  Google Scholar 

  112. Pham DT, Dimov SS, Bigot S, Ivanov A, Popov K. Micro-EDM-recent developments and research issues. J Mater Process Technol. 2004;149:50–7.

    Article  Google Scholar 

  113. Zeis M. Deformation of thin graphite electrodes with high aspect ratio during sinking electrical discharge machining. CIRP Ann Manuf Technol. 2017;66:185–8.

    Article  Google Scholar 

  114. Ichikawa T, Natsu W. Realization of micro-EDM under ultra-small discharge energy by applying ultrasonic vibration to machining fluid. Procedia CIRP. 2013;6:326–31.

    Article  Google Scholar 

  115. Garn R, Schubert A, Zeidler H. Analysis of the effect of vibrations on the micro-EDM process at the workpiece surface. Precis Eng. 2011;35:364–8.

    Article  Google Scholar 

  116. Wang J, Feng P, Zhang J, Guo P. Experimental study on vibration stability in rotary ultrasonic machining of ceramic matrix composites: cutting force variation at hole entrance. Ceram Int. 2018;44:14386–92.

    Article  Google Scholar 

  117. Li Z, Tang J, Li Y, Bai J. Investigation on surface integrity in novel micro-EDM with two-dimensional ultrasonic circular vibration (UCV) electrode. J Manuf Process. 2022;76:828–40.

    Article  Google Scholar 

  118. Zou Z, Guo Z, Huang Q, Yue T, Liu J, Chen X. Precision EDM of micron-scale diameter hole array using in-process wire electro-discharge grinding high-aspect-ratio microelectrodes. Micromachines. 2021;12:17.

    Article  Google Scholar 

  119. Liao YS, Liang HW. Study of vibration assisted inclined feed micro-EDM drilling. Procedia CIRP. 2016;42:552–6.

    Article  Google Scholar 

  120. Goiogana M, Sarasua JA, Ramos JM. Ultrasonic assisted electrical discharge machining for high aspect ratio blind holes. Procedia CIRP. 2018;68:81–5.

    Article  Google Scholar 

  121. Lee PA, Kim Y, Kim BH. Effect of low frequency vibration on micro EDM drilling. Int J Precis Eng Manuf. 2015;16:2617–22.

    Article  Google Scholar 

  122. Singh SK, Mali HS, Unune DR, Abdul-Rani AM, Wojciechowski S. Material independent effectiveness of workpiece vibration in μ-EDM drilling. J Market Res. 2022;18:531–46.

    Google Scholar 

  123. Wang HB, Sun CH, Yang YF. An ultrasonic vibration assisted electrical discharge machining device with workpiece vibration. J Appl Sci Eng. 2020;24:21–32.

    Google Scholar 

  124. Jahan MP, Saleh T, Rahman M, Wong YS. Study of micro-EDM of tungsten carbide with workpiece vibration. Adv Mater Res. 2011;264:1056–61.

    Article  Google Scholar 

  125. Jia B, Wang D, Wang Z, Zhao W. Experiment study of combining micro EDM with USM. Key Eng Mater. 2008;375:248–52.

    Article  Google Scholar 

  126. Jia B, Wang DS, Guo JZ. Machining deep micro holes by EDM with USM in inversion installing. Mater Sci Forum. 2009;626:321–6.

    Article  Google Scholar 

  127. Chern GL, Chuang Y. Study on vibration-EDM and mass punching of micro-holes. J Mater Process Technol. 2006;180:151–60.

    Article  Google Scholar 

  128. Gao CS, Liu ZX. A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J Mater Process Technol. 2003;139:226–8.

    Article  Google Scholar 

  129. Das AK, Kumar P, Sethi A, Singh PK, Hussain M. Influence of process parameters on the surface integrity of micro-holes of SS304 obtained by micro-EDM. J Braz Soc Mech Sci Eng. 2016;38:2029–37.

    Article  Google Scholar 

  130. Li Z, Tang J, Bai J. A novel micro-EDM method to improve micro hole machining performances using ultrasonic circular vibration (UCV) electrode. Int J Mech Sci. 2020;175: 105574.

    Article  Google Scholar 

  131. Kurniawan R, Thirumalai Kumaran S, Arumuga Prabu V, Zhen Y, Park KM, Kwak YI, Islam MM, Ko TJ. Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite. Measurement. 2017;110:98–115.

    Article  Google Scholar 

  132. Yan BH, Huang FY, Chow HM, Tsai JY. Micro-hole machining of carbide by electric discharge machining. J Mater Process Technol. 1999;87:139–45.

    Article  Google Scholar 

  133. Zhao W, Zhenlong W, Shichun D, Chi G, Wei H. Ultrasonic and electric discharge machining to deep and small hole on Titanium Alloy. J Mater Process Technol. 2002;120:101–6.

    Article  Google Scholar 

  134. Li Y, Hou W, Xu J, Yu H. An Investigation on drilling micro holes in different processes using micro-EDM. IEEE Int Conf Mechatron Autom. 2016;2016:1283–8.

    Google Scholar 

  135. Mattia B, Qian J, Reynaerts D. Enhancement of the micro-EDM process for drilling through-holes. Procedia CIRP. 2018;68:610–5.

    Article  Google Scholar 

  136. Rafaqat M, Mufti NA, Ahmed N, Alahmari AM, Hussain A. EDM of D2 steel: performance comparison of EDM die sinking electrode designs. Appl Sci. 2020;10(21):7411.

    Article  Google Scholar 

  137. Kumar R, Singh I. A modified electrode design for improving process performance of electric discharge drilling. J Mater Process Technol. 2019;264:211–9.

    Article  Google Scholar 

  138. Hung JC, Lin JK, Yan BH, Liu HS, Ho PH. Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J Micromech Microeng. 2006;16(12):2705.

    Article  Google Scholar 

  139. Plaza S, Sanchez JA, Perez E, Gil R, Izquierdo B, Ortega N, Pombo I. Experimental study on micro EDM-drilling of Ti6al4v using helical electrode. Precis Eng. 2014;38(4):821–7.

    Article  Google Scholar 

  140. Ferraris E, Castiglioni V, Ceyssens F, Annoni M, Lauwers B, Reynaerts D. EDM drilling of ultra-high aspect ratio micro holes with insulated tools. CIRP Ann Manuf Technol. 2013;62(1):191–4.

    Article  Google Scholar 

  141. Dong S, Wang Z, Wang Y. Research on micro-EDM with an auxiliary electrode to suppress stray-current corrosion on C17200 beryllium copper alloy in deionized water. Int J Adv Manuf Technol. 2017;93:857–67.

    Article  Google Scholar 

  142. Liu Q, Zhang Q, Zhang M, Yang F, Rajurkar KP. Effects of surface layer of AISI 304 on micro EDM performance. Precis Eng. 2019;57:195–202.

    Article  Google Scholar 

  143. Haque R, Sekh M, Kibria G, Haidar S. Comparative study of parametric effects on the performance of simple and powder mixed EDM using aluminium and graphite powder on Inconel X750 alloy. Mater Today Proc. 2021;46:8366–73.

    Article  Google Scholar 

  144. Dong S, Wang Z, Wang Y, Zhang J. Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy. J Alloy Compd. 2017;727:1157–64.

    Article  Google Scholar 

  145. Rashid A, Bilal A, Liu C, Jahan MP, Talamona D, Perveen A. Effect of conductive coatings on micro-electro-discharge machinability of aluminum nitride ceramic using on-machine-fabricated microelectrodes. Materials. 2019;12:3316.

    Article  Google Scholar 

  146. Koli BC, Dabade UA. Performance analysis of powder assisted reverse micro electric discharge machining (m-EDM). Mater Today Proc. 2019;19:551–5.

    Article  Google Scholar 

  147. Zhang L, Tong H, Li Y. Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precis Eng. 2015;39:100–6.

    Article  Google Scholar 

  148. Huan L, Bai J, Cao Y, Zhu G, Hou S. Micro-electrode wear and compensation to ensure the dimensional consistency accuracy of micro-hole array in micro-EDM drilling. Int J Adv Manuf Technol. 2020;111:1–13.

    Article  Google Scholar 

  149. Li C, Hu Y, Zhang F, Geng Y, Meng B. Molecular dynamics simulation of laser assisted grinding of GaN crystals. Int J Mech Sci. 2023;239: 107856.

    Article  Google Scholar 

  150. Wu C, Zhang T, Guo W, Meng X, Ding Z, Liang SY. Laser-assisted grinding of silicon nitride ceramics: Micro-groove preparation and removal mechanism. J Ceram Int. 2022;48:32366–79.

    Article  Google Scholar 

  151. Ni C, Zhu L, Liu C, Yang Z. Analytical modeling of tool-workpiece contact rate and experimental study in ultrasonic vibration-assisted milling of Ti–6Al–4V. Int J Mech Sci. 2018;142:97–111.

    Article  Google Scholar 

  152. Zhao B, Wu B, Yue Y, Ding W, Xu J, Guo G. Developing a novel radial ultrasonic vibration-assisted grinding device and evaluating its performance in machining PTMCs. Chin J Aeronaut. 2023;36:244–56.

    Article  Google Scholar 

  153. Qin S, Zhu L, Wiercigroch M, Ren T, Hao Y, Ning J, Zhao J. Material removal and surface generation in longitudinal-torsional ultrasonic assisted milling. Int J Mech Sci. 2022;227:107375.

    Article  Google Scholar 

  154. Ni C, Zhu L. Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. J Mater Process Technol. 2020;278:116518.

    Article  Google Scholar 

  155. Sun B, Fu X, Xu Y, Gu Y. Research on ultrasonic vibration grinding technology of SiCp/Al composites. Diam Abras Eng. 2022;42:713–9.

    Google Scholar 

  156. Hao X, Yuan Z, Wen Q, Guo S. Process research on ultrasonic vibration assisted lapping of single crystal silicon carbide. Diam Abras Eng. 2022;42:268–74.

    Google Scholar 

  157. Feng Y, Guo Y, Ling Z, Zhang X. Investigation on machining performance of micro-holes EDM in ZrB2-SiC ceramics using a magnetic suspension spindle system. Int J Adv Manuf Technol. 2019;101:2083–95.

    Article  Google Scholar 

  158. He X, Wang Y, Wang Z, Zeng Z. Micro-hole drilled by EDM-ECM combined processing. Key Eng Mater. 2013;562:52–6.

    Article  Google Scholar 

  159. Wu YY, Huang TW, Sheu DY. Desktop micro-EDM system for high-aspect ratio micro-hole drilling in tungsten cemented carbide by cut-side micro-tool. Micromachines. 2020;11:675.

    Article  Google Scholar 

  160. Xu B, Feng X, Wu X, Luo F, Fu L, Zhai X, Zhao Y, Zhao H, Lei J. Micro-EDM-assisted machining micro-holes in printed circuit board. Int J Adv Manuf Technol. 2021;113:1191–201.

    Article  Google Scholar 

  161. Hwang YL, Kuo CL, Hwang SF. Fabrication of a micro-pin array with high density and high hardness by combining mechanical peck-drilling and reverse-EDM. J Mater Process Technol. 2010;210:1103–30.

    Article  Google Scholar 

  162. Liu HS, Yan BH, Chen CL, Huang FY. Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int J Mach Tool Manufact. 2006;46:80–7.

    Article  Google Scholar 

  163. Al-Ahmari AMA, Rasheed MS, Mohammed MK, Saleh T. A hybrid machining process combining micro-EDM and laser beam machining of nickel-titanium based shape memory alloy. Mater Manuf Process. 2016;31:447–55.

    Article  Google Scholar 

  164. Lin Y, Tsao C, Hsu C, Hung S, Wen D. Evaluation of the characteristics of the micro electrical discharge machining process using response surface methodology based on the central composite design. Int J Adv Manuf Technol. 2012;62(9–12):1013–23.

    Article  Google Scholar 

  165. Ashok kumar U, Laxminarayana P. Optimization of electrode tool wear in micro holes machining by die sinker EDM using taguchi approach. Mater Today Proc. 2018;5:1824–31.

    Article  Google Scholar 

  166. Kumar P, Pattanaik LN, Singh RK. Simultaneous parametric optimization of micro-EDM drilling of brass C360 using Taguchi based grey relation analysis. Eng Rev. 2019;41:14–24.

    Article  Google Scholar 

  167. Imran M, Mativenga P, Gholinia A, Withers P. Assessment of surface integrity of Ni superalloy after electrical-discharge, laser and mechanical micro-drilling processes. Int J Adv Manuf Technol. 2015;79:1303–11.

    Article  Google Scholar 

  168. Azad MS, Puri AB. Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. Int J Adv Manuf Technol. 2012;61:1231–9.

    Article  Google Scholar 

  169. Siva M, Parivallal M, Pradeep KM. Investigation on the effect of process parameters in micro electrical discharge machining. Procedia Mater Sci. 2014;5:1829–36.

    Article  Google Scholar 

  170. Natarajan N, Suresh P. Experimental investigations on the micro-hole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. Int J Adv Manuf Technol. 2015;77:1741–50.

    Article  Google Scholar 

  171. Kumar K, Rawal SK, Singh VP, Bala A. Experimental study on diametric expansion and taper rate in EDM drilling for high aspect ratio micro holes in high strength materials. Mater Today Proc. 2018;5:7363–72.

    Article  Google Scholar 

Download references

Funding

This study was funded with the support of the National Natural Science Foundation of China (No. 62103034), the National Natural Science Foundation joint fund project of China (No. U23A20633), the Natural Science Foundation of Liaoning Province (No. 2022-MS-122), Open Project of State Key Laboratory for Novel Software Technology, Nanjing University (No. KFKT2022B21) and the Open Project of State Key Laboratory for High Performance Tools (GXNGJSKL-2024-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Sun or Siqian Gong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The authors state that the present work is in compliance with the ethical standards. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Sun, Y., Junyi, D. et al. Review on role of electrical discharge drilling methods in fabricating micro holes: formation mechanism, defects characterization and mitigation strategies. Arch. Civ. Mech. Eng. 24, 143 (2024). https://doi.org/10.1007/s43452-024-00950-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00950-5

Keywords

Navigation