Skip to main content
Log in

Comparative study on externally bonded heat-treated jute and glass fiber reinforcement for repair of pre-cracked high performance concrete beams

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The adoption of natural fiber reinforced polymer (FRP) composites as an eco-friendly substitute for synthetic FRPs in structural strengthening applications is gaining substantial momentum. This study delves into the effectiveness of jute fabric reinforced epoxy composites in bolstering the flexural strength of impaired concrete beams. An array of variables, encompassing the number of fabric layers (ranging from 1 to 3), fiber heat treatment, externally bonded reinforcement (EBR) configuration (soffit vs. U-shape), and fiber type (jute vs. glass), underwent systematic scrutiny. The comprehensive analysis of 30 pre-cracked high-performance concrete beams yielded compelling findings. In particular, the application of heat-treated jute EBR, especially when employing two or three layers, resulted in significant increases in peak loads, translating to improvements ranging from 85 to 120% when compared to the control beam. This treatment significantly improves the bond between the fibers and the matrix, consequently enhancing the structural performance. Notably, jute composites can attain equivalent strengthening performance compared to glass FRP while offering substantial cost savings and significantly reducing carbon emissions, rendering them a more environmentally sustainable and economically viable choice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data underpinning this research is accessible upon reasonable request from the corresponding author.

References

  1. Shakir Abbood I, Aldeen Odaa Hasan Jasim SKFMA. Properties evaluation of fiber reinforced polymers and their constituent materials used in structures—a review. Mater Today Proc. 2021;43:1003–8. https://doi.org/10.1016/j.matpr.2020.07.636.

    Article  Google Scholar 

  2. Nwankwo CO, Mahachi J, Olukanni DO, Musonda I. Natural fibres and biopolymers in FRP composites for strengthening concrete structures: a mixed review. Constr Build Mater. 2023;363:129661. https://doi.org/10.1016/j.conbuildmat.2022.129661.

    Article  Google Scholar 

  3. Shah DU, Schubel PJ, Licence P, Clifford MJ. Hydroxyethylcellulose surface treatment of natural fibres: the new ‘twist’ in yarn preparation and optimization for composites applicability. J Mater Sci. 2012;47(6):2700–11. https://doi.org/10.1007/s10853-011-6096-1.

    Article  ADS  Google Scholar 

  4. Das S, La Rosa A, Goutianos S, Grammatikos S. Flax fibers, their composites and application. 2022;209–32. https://doi.org/10.1016/B978-0-12-824528-6.00017-5.

  5. Mahir FI, Keya KN, Sarker B, Nahiun KM, Khan RA. A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Mater Eng Res. 2019;1(2):86–97. https://doi.org/10.25082/MER.2019.02.007.

    Article  Google Scholar 

  6. Navaratnam S, Selvaranjan K, Jayasooriya D, Rajeev P, Sanjayan J. Applications of natural and synthetic fiber reinforced polymer in infrastructure: a suitability assessment. J Build Eng. 2023;66:105835. https://doi.org/10.1016/j.jobe.2023.105835.

    Article  Google Scholar 

  7. Chlela R, Bigaud D, Riahi H, Quiertant M, Curtil L, Benzarti K. Durability and lifetime prediction of flax fiber reinforced polymer composites. In: Ilki A, Ispir M, Inci P, editors. 10th international conference on FRP composites in civil engineering. Lecture notes in civil engineering, vol. 198. Cham: Springer International Publishing; 2022. p. 695–705. https://doi.org/10.1007/978-3-030-88166-5_60.

    Chapter  Google Scholar 

  8. Duc F, Bourban PE, Plummer CJG, Månson JAE. Damping of thermoset and thermoplastic flax fibre composites. Compos Part Appl Sci Manuf. 2014;64:115–23. https://doi.org/10.1016/j.compositesa.2014.04.016.

    Article  Google Scholar 

  9. Ben Ameur M, El Mahi A, Rebiere JL, Beyaoui M, Abdennadher M, Haddar M. Bending fatigue behavior of flax and carbon fiber reinforced epoxy resin. In: Aifaoui N, Affi Z, Abbes MS, Walha L, Haddar M, Romdhane L, Benamara A, Chouchane M, Chaari F, editors. Design and modeling of mechanical systems-IV. Lecture notes in mechanical engineering. Cham: Springer International Publishing; 2020. p. 567–75. https://doi.org/10.1007/978-3-030-27146-6_61.

    Chapter  Google Scholar 

  10. Di Luccio G, Michel L, Ferrier E, Martinelli E. Seismic retrofitting of RC walls externally strengthened by flax–FRP strips. Compos Part B Eng. 2017;127:133–49. https://doi.org/10.1016/j.compositesb.2017.06.017.

    Article  Google Scholar 

  11. Wang W, Mo Z, Zhang Y, Chouw N. Dynamic splitting tensile behaviour of concrete confined by natural flax and glass FRP. Polymers. 2022;14(20):4424. https://doi.org/10.3390/polym14204424.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang W, Zhang X, Mo Z, Chouw N, Li Z, Xu Z-D. A comparative study of impact behaviour between natural flax and glass FRP confined concrete composites. Constr Build Mater. 2020;241:117997. https://doi.org/10.1016/j.conbuildmat.2020.117997.

    Article  Google Scholar 

  13. Ferrier E, Michel L, Ngo MD. Experimental study on the shear behavior of RC beams reinforced by natural composite materials (flax fibers). Structures. 2021;33:637–54. https://doi.org/10.1016/j.istruc.2021.03.027.

    Article  Google Scholar 

  14. Yooprasertchai E, Wiwatrojanagul P, Pimanmas A. A use of natural sisal and jute fiber composites for seismic retrofitting of nonductile rectangular reinforced concrete columns. J Build Eng. 2022;52:104521. https://doi.org/10.1016/j.jobe.2022.104521.

    Article  Google Scholar 

  15. Chen C, et al. Eco-friendly and mechanically reliable alternative to synthetic FRP in externally bonded strengthening of RC beams: natural FRP. Compos Struct. 2020;241:112081. https://doi.org/10.1016/j.compstruct.2020.112081.

    Article  Google Scholar 

  16. Abdulla A, Thaker R, Khazaal A. Toughness of timber beams strengthened with jute fibers. Tikrit J Eng Sci. 2020;27:94–112. https://doi.org/10.25130/tjes.27.3.11.

    Article  Google Scholar 

  17. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z. Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B Eng. 2013;51:28–34. https://doi.org/10.1016/j.compositesb.2013.02.031.

    Article  Google Scholar 

  18. Langhorst A, Ravandi M, Mielewski D, Banu M. Technical agave fiber tensile performance: the effects of fiber heat-treatment. Ind Crops Prod. 2021;171:113832. https://doi.org/10.1016/j.indcrop.2021.113832.

    Article  Google Scholar 

  19. Neto JSS, Lima RAA, Cavalcanti DKK, Souza JPB, Aguiar RAA, Banea MD. Effect of chemical treatment on the thermal properties of hybrid natural fiber-reinforced composites. J Appl Polym Sci. 2019;136(10):47154. https://doi.org/10.1002/app.47154.

    Article  Google Scholar 

  20. Bamboo heat treatments and their effects on bamboo properties. Constr Build Mater. 2022; 331: 127320. https://doi.org/10.1016/j.conbuildmat.2022.127320.

  21. Cao Y, Chan F, Chui Y-H, Xiao H. Characterization of flax fibres modified by alkaline, enzyme, and steam-heat treatments. BioRes. 2012;7:4109–21.

    Article  Google Scholar 

  22. Chang BP, Chan WH, Zamri MH, Md Akil H, Chuah HG. Investigating the effects of operational factors on wear properties of heat-treated pultruded Kenaf fiber-reinforced polyester composites using Taguchi method. J Nat Fibers. 2019;16(5):702–17. https://doi.org/10.1080/15440478.2018.1432001.

    Article  Google Scholar 

  23. Mishra S, Parashar V. Experimental analysis of duo-fiber interaction on the tensile strength of surface-modified flax–kenaf-reinforced epoxy composite. Polym Bull. 2023;80:13159–79. https://doi.org/10.1007/s00289-023-04708-6.

    Article  Google Scholar 

  24. Azadeh A, Ghavami K, García JJ. The influence of heat on mechanical properties of Dendrocalamus giganteus bamboo. J Build Eng. 2021;43:102613. https://doi.org/10.1016/j.jobe.2021.102613.

    Article  Google Scholar 

  25. Cui J, et al. Effects of thermal treatment on the mechanical properties of bamboo fiber bundles. Materials. 2023;16(3):1239. https://doi.org/10.3390/ma16031239.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Voravutvityaruk T, Jirawattanasomkul T, Ueda T, Wuttiwannasak N, Poonsawat T. Behavior of concrete confined by jute natural fiber reinforced polymer with heat treatment. 2017.

  27. Jirawattanasomkul T, Likitlersuang S, Wuttiwannasak N, Ueda T, Zhang D, Voravutvityaruk T. Effects of heat treatment on mechanical properties of jute fiber-reinforced polymer composites for concrete confinement. J Mater Civ Eng. 2020;32:04020363. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003456.

    Article  Google Scholar 

  28. Campana C, Leger R, Sonnier R, Ferry L, Ienny P. Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Compos Part Appl Sci Manuf. 2018;107:171–9. https://doi.org/10.1016/j.compositesa.2017.12.029.

    Article  Google Scholar 

  29. Carus M, de Beus N, Barth M. Carbon footprint and sustainability of different natural fibres for biocomposites and insulation material. Comprehensively. [En ligne]. 2019. Disponible sur: https://growinghempassociation.org/wp-content/uploads/2022/11/19-08-06-Study-Natural-Fibre-Sustainability-Carbon-Footprint-1.pdf

  30. Kolesov YuI, Kudryavtsev MYu, Mikhailenko NYu. Types and compositions of glass for production of continuous glass fiber (review). Glass Ceram. 2001;58(5):197–202. https://doi.org/10.1023/A:1012386814248.

    Article  Google Scholar 

  31. Yoo D-Y, Banthia N. Size-dependent impact resistance of ultra-high-performance fiber-reinforced concrete beams. Constr Build Mater. 2017;142:363–75. https://doi.org/10.1016/j.conbuildmat.2017.03.080.

    Article  Google Scholar 

  32. Zhang Z, Shakoorioskooie M, Griffa M, Lura P, Angst U. A laboratory investigation of cutting damage to the steel-concrete interface. Cem Concr Res. 2020;138:106229. https://doi.org/10.1016/j.cemconres.2020.106229.

    Article  Google Scholar 

  33. Sen T, Paul A. Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP. Int J Sustain Built Environ. 2015;4(2):248–64. https://doi.org/10.1016/j.ijsbe.2015.04.001.

    Article  Google Scholar 

  34. Sreekumar PA, Thomas SP, Marc Saiter Joseph Unnikrishnan Thomas JKGS. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos Part Appl Sci Manuf. 2009;40(11):1777–84. https://doi.org/10.1016/j.compositesa.2009.08.013.

    Article  Google Scholar 

  35. ASTM D 3039: Standard test method for tensile properties of polymer matrix composite materials.

  36. Chen C, et al. Effect of transverse groove on bond behavior of FRP-concrete interface: experimental study, image analysis and design. Compos Part B Eng. 2019;161:205–19. https://doi.org/10.1016/j.compositesb.2018.10.072.

    Article  ADS  Google Scholar 

  37. Lorenzis LD, Miller B, Nanni A. Bond of FRP laminates to concrete. ACI Mater J. 2001;98(3):256–64.

    Google Scholar 

  38. ASTM C78/C78M-18. Standard test method for flexural strength of concrete (using simple beam with third-point loading). West Conshohocken, USA: ASTM International; 2018. p. 1–5.

    Google Scholar 

  39. Salih YA, Sabeeh NN, Yass MF, Ahmed AS, Khudhurr ES. Concrete beams strengthened with jute fibers. Civ Eng J. 2019;5(4):767–76. https://doi.org/10.28991/cej-2019-03091286.

    Article  Google Scholar 

  40. Sen T, Reddy HNJ. Pretreatment of woven jute FRP composite and its use in strengthening of reinforced concrete beams in flexure. Adv Mater Sci Eng. 2013;2013:e128158. https://doi.org/10.1155/2013/128158.

    Article  Google Scholar 

  41. Attari N, Amziane S, Chemrouk M. Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Constr Build Mater. 2012;37:746–57. https://doi.org/10.1016/j.conbuildmat.2012.07.052.

    Article  Google Scholar 

  42. Chen W, Pham TM, Sichembe H, Chen L, Hao H. Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet. Compos Part B Eng. 2018;134:114–26. https://doi.org/10.1016/j.compositesb.2017.09.053.

    Article  Google Scholar 

  43. Yuvaraj S, Chithra K, Nirmalkumar K, Jeyanth B. Performance evaluation of hybrid fibers strengthened reinforced concrete. Today Proc Mater. 2023. https://doi.org/10.1016/j.matpr.2023.03.667.

    Article  Google Scholar 

  44. Hong K-N, Cho C-G, Lee S-H, Park Y. Flexural behavior of RC members using externally bonded aluminum-glass fiber composite beams. Polymers. 2014;6:667–85. https://doi.org/10.3390/polym6030667.

    Article  Google Scholar 

  45. Smith ST, Teng JG. FRP-strengthened RC beams. II: assessment of debonding strength models. Eng Struct. 2002;24:397–417. https://doi.org/10.1016/S0141-0296(01)00106-7.

    Article  Google Scholar 

  46. Amirhafizan MH, Yuhazri MY, Umarfaruq HM, Lau STW, Kamarul AM, Zulfikar AJ. Laminated jute and glass fibre reinforced composite for repairing concrete through wrapping technique. Int J Integr Eng. 2023;15:2023.

    Article  Google Scholar 

  47. Wilhem G. Clasen (2023) Rapport du Marché de Jute pour janvier 2023. Natural fiber worldwid. [En ligne]. Disponible sur: https://www.wgc.de/media/pages/produkte/jute/b5792261d3-1675415945/fr_jute-marketreport_01.2023.pdf

  48. Glass fiber price in the United States-2023-charts and tables-indexbox. Consulté le: 6 Oct, 2023. [En ligne]. Disponible sur: https://www.indexbox.io/search/glass-fiber-price-the-united-states/

Download references

Acknowledgements

The authors would like to express their gratitude to the Civil Engineering Laboratory at the University of Bordj Bou Arreridj for facilitating the experimental work in this study, as well as to the 'Microscopies and Analyse’s imaging center, I-Mat Federation (FR4122) at CY Cergy Paris University (France) for conducting the SEM analyses.

Funding

This study did not receive any external financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahar Tayebi.

Ethics declarations

Conflict of interest

The author affirms the absence of any conflicts of interest.

Ethical approval

This article does not involve experiments with human participants or animals conducted by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaddache, L., Belkadi, A.A., Kessal, O. et al. Comparative study on externally bonded heat-treated jute and glass fiber reinforcement for repair of pre-cracked high performance concrete beams. Archiv.Civ.Mech.Eng 24, 82 (2024). https://doi.org/10.1007/s43452-024-00899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00899-5

Keywords

Navigation