Skip to main content
Log in

Nonlocal strain gradient-based nonlinear in-plane thermomechanical stability of FG multilayer micro/nano-arches

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In various microelectromechanical systems, arch-type micro- or nanostructures are extensively used because of their specific geometry. In this regard, the present research exploration deals with the size-dependent nonlinear in-plane stability characteristics of functionally graded (FG) multilayer composite micro/nano-arches subjected to uniform radial pressure together with temperature changes. To this intension, the nonlocal strain gradient (NSG) continuum elasticity is implemented in a higher-order shear flexible arch model to capture nonlocal stress tensor as well as strain gradient size dependencies. With the aid of the Halpin–Tsai homogenization scheme, the material the effective Young’s modulus is extracted layer to layer corresponding to different FG multilayer pattern of composite micro/nano-arches. The NSG-based radial load–deflection and radial load-axial load nonlinear equilibrium paths are traced corresponding to several parametrical case studies. It is revealed that the both effects of the nonlocal stress tensor and strain gradient size dependency on the value of lower and upper limit radial pressures are more significant than those on the lower and upper limit resultant axial forces. Furthermore, it is observed that by increasing the value of temperature change, the effects of nonlocality and strain gradient size dependency on the NSG-based lower limit radial pressure enhance, while these effects on the NSG-based lower limit resultant axial force decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. Zhao S, Yang Z, Kitipornchai S, Yang J. Dynamic instability of functionally graded porous arches reinforced by graphene platelets. Thin Walled Struct. 2020;147:106491. https://doi.org/10.1016/J.TWS.2019.106491.

    Article  Google Scholar 

  2. Liu AR, Huang YH, Fu JY, Yu QC, Rao R. Experimental research on stable ultimate bearing capacity of leaning-type arch rib systems. J Constr Steel Res. 2015;114:281–92. https://doi.org/10.1016/J.JCSR.2015.08.011.

    Article  Google Scholar 

  3. Huang Y, Yang Z, Fu J, Liu A. Long-term lateral-torsional buckling behavior of pin-ended CFST arches under uniform radial loads and temperature field. Mech Adv Mater Struct. 2021;28:2472–86. https://doi.org/10.1080/15376494.2020.1743397.

    Article  Google Scholar 

  4. Sahmani S, Khandan A, Saber-Samandari S, Aghdam MM. Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: Application, communication and simulation. Ceram Int. 2018;44:11282–91. https://doi.org/10.1016/J.CERAMINT.2018.03.173.

    Article  CAS  Google Scholar 

  5. Sahmani S, Shahali M, Khandan A, Saber-Samandari S, Aghdam MM. Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scaffolds fabricated via space holder technique. Appl Clay Sci. 2018;165:112–23. https://doi.org/10.1016/J.CLAY.2018.08.013.

    Article  CAS  Google Scholar 

  6. Babaei H, Kiani Y, Eslami MR. Thermally induced large deflection analysis of shear deformable FGM shallow curved tubes using perturbation method. ZAMM Zeitschrift Fur Angew Math Und Mech. 2019;99:e201800148. https://doi.org/10.1002/ZAMM.201800148.

    Article  ADS  MathSciNet  Google Scholar 

  7. Trinh MC, Kim SE. A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis. Aerosp Sci Technol. 2019;94:105356. https://doi.org/10.1016/j.ast.2019.105356.

    Article  Google Scholar 

  8. Sahmani S, Saber-Samandari S, Khandan A, Aghdam MM. Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: Fabrication, characterization and simulation. J Mech Behav Biomed Mater. 2019;95:76–88. https://doi.org/10.1016/j.jmbbm.2019.03.014.

    Article  CAS  PubMed  Google Scholar 

  9. Lu H, Liu L, Liu A, Pi YL, Bradford MA, Huang Y. Effects of movement and rotation of supports on nonlinear instability of fixed shallow arches. Thin-Walled Struct. 2020;155:106909. https://doi.org/10.1016/J.TWS.2020.106909.

    Article  Google Scholar 

  10. Sahmani S, Khandan A, Saber-Samandari S, Mohammadi AM. Effect of magnetite nanoparticles on the biological and mechanical properties of hydroxyapatite porous scaffolds coated with ibuprofen drug. Mater Sci Eng C. 2020;111:110835. https://doi.org/10.1016/j.msec.2020.110835.

    Article  CAS  Google Scholar 

  11. Zhang Z, Liu A, Yang J, PY Lin, Huang Y, Fu J. Nonlinear in-plane buckling of shallow laminated arches incorporating shear deformation under a uniform radial loading. Compos Struct 2020;252:112732. https://doi.org/10.1016/J.COMPSTRUCT.2020.112732.

  12. Brischetto S, Tornabene F, Fantuzzi N, Viola E. 3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders. Meccanica. 2016;51:2059–98. https://doi.org/10.1007/S11012-016-0361-Y/FIGURES/13.

    Article  MathSciNet  Google Scholar 

  13. Barbaros I, Yang Y, Safaei B, Yang Z, Qin Z, Asmael M. State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials. Nanotechnol Rev. 2022;11:321–71. https://doi.org/10.1515/NTREV-2022-0017/ASSET/GRAPHIC/J_NTREV-2022-0017_FIG_010.JPG.

    Article  CAS  Google Scholar 

  14. Nuhu AA, Safaei B. State-of-the-Art of Vibration Analysis of Small-Sized Structures by using Nonclassical Continuum Theories of Elasticity. Arch Comput Methods Eng. 2022;2022(29):4959–5147. https://doi.org/10.1007/S11831-022-09754-3.

    Article  Google Scholar 

  15. Tornabene F, Dimitri R, Viola E. Transient dynamic response of generally-shaped arches based on a GDQ-time-stepping method. Int J Mech Sci. 2016;114:277–314. https://doi.org/10.1016/J.IJMECSCI.2016.05.005.

    Article  Google Scholar 

  16. Yi H, Sahmani S, Safaei B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng. 2020;20:48. https://doi.org/10.1007/s43452-020-00047-9.

    Article  Google Scholar 

  17. Allahkarami F, Tohidi H, Dimitri R, Tornabene F. Dynamic stability of bi-directional functionally graded porous cylindrical shells embedded in an elastic foundation. Appl Sci. 2020;10:1345. https://doi.org/10.3390/APP10041345.

    Article  CAS  Google Scholar 

  18. Li Z, Zheng J, Zhang Z. Thermal nonlinear performance of the porous metal cylinders with composite graphene nanofiller reinforcement encased in elastic mediums. Int J Mech Sci 2020;181:105698. https://doi.org/10.1016/J.IJMECSCI.2020.105698.

  19. Fan F, Lei B, Sahmani S, Safaei B. On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin-Walled Struct 2020;154:106841. https://doi.org/10.1016/j.tws.2020.106841.

  20. Shahmohammadi MA, Abdollahi P, Salehipour H. Geometrically nonlinear analysis of doubly curved imperfect shallow shells made of functionally graded carbon nanotube reinforced composite (FG_CNTRC). Mech Based Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1822182.

    Article  Google Scholar 

  21. Yuan Y, Zhao X, Zhao Y, Sahmani S, Safaei B. Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct 2021;159:107249. https://doi.org/10.1016/j.tws.2020.107249.

  22. Xie K, Wang Y, Fan X, Chen H. Free vibration and dynamic response of micro-scale functionally graded circular arches by using a quasi-3D theory. J Brazilian Soc Mech Sci Eng. 2022;44:130. https://doi.org/10.1007/S40430-022-03423-Z.

    Article  Google Scholar 

  23. Moghaddasi M, Kiani Y. Free and forced vibrations of graphene platelets reinforced composite laminated arches subjected to moving load. Meccanica. 2022;57:1105–24. https://doi.org/10.1007/S11012-022-01476-X.

    Article  MathSciNet  Google Scholar 

  24. Xie B, Sahmani S, Safaei B, Xu B. Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng Comput. 2021;37:1611–34. https://doi.org/10.1007/s00366-019-00931-w.

    Article  Google Scholar 

  25. Li W, Geng R, Chen S, Huang H. Geometrically exact beam element with predefined stress resultant fields for nonlinear analysis of FG curved beams with discontinuous stiffness. Compos Struct 2021;276:114437. https://doi.org/10.1016/J.COMPSTRUCT.2021.114437.

  26. Rajasekaran S, Khaniki HB, Ghayesh MH. Static, stability and dynamic characteristics of asymmetric bi-directional functionally graded sandwich tapered elastic arches in thermo-mechanical environments. Eur J Mech A/Solids 2022;92:104447. https://doi.org/10.1016/J.EUROMECHSOL.2021.104447.

  27. Li Q, Xie B, Sahmani S, Safaei B. Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction. J Brazilian Soc Mech Sci Eng. 2020;42:237. https://doi.org/10.1007/s40430-020-02317-2.

    Article  CAS  Google Scholar 

  28. Fan F, Cai X, Sahmani S, Safaei B. Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Compos Struct 2021;262:113604. https://doi.org/10.1016/j.compstruct.2021.113604.

  29. Yang X, Sahmani S, Safaei B. Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput. 2021;37:1549–64. https://doi.org/10.1007/s00366-019-00901-2.

    Article  Google Scholar 

  30. Kiss LP. Sensitivity of FGM shallow arches to loading imperfection when loaded by a concentrated radial force around the crown. Int J Non Linear Mech. 2019;116:62–72. https://doi.org/10.1016/J.IJNONLINMEC.2019.05.009.

    Article  Google Scholar 

  31. Fazzolari FA, Viscoti M, Dimitri R, Tornabene F. 1D-Hierarchical Ritz and 2D-GDQ Formulations for the free vibration analysis of circular/elliptical cylindrical shells and beam structures. Compos Struct 2021;258:113338. https://doi.org/10.1016/J.COMPSTRUCT.2020.113338.

  32. Ali V, Alklaibi AM, Talha M. On natural frequency of finite element modeled geometrically imperfect shear deformable functionally gradient sandwich arches in thermal environment. Int J Appl Mech. 2019;11:1950001. https://doi.org/10.1142/S1758825119500017.

    Article  Google Scholar 

  33. Fattahi AM, Sahmani S, Ahmed NA. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mech Based Des Struct Mach. 2020;48:403–32. https://doi.org/10.1080/15397734.2019.1624176.

    Article  Google Scholar 

  34. Li Z, Zheng J, Zhang Z, He H. Nonlinear stability and buckling analysis of composite functionally graded arches subjected to external pressure and temperature loading. Eng Struct 2019;199:109606. https://doi.org/10.1016/J.ENGSTRUCT.2019.109606.

  35. Sahmani S, Fattahi AM, Ahmed NA. Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. Int J Mech Sci 2020;165:105203. https://doi.org/10.1016/j.ijmecsci.2019.105203.

  36. Huang Y, Yang Z, Liu A, Fu J. Nonlinear buckling analysis of functionally graded graphene reinforced composite shallow arches with elastic rotational constraints under uniform radial load. Materials (Basel). 2018;11:910. https://doi.org/10.3390/MA11060910.

    Article  ADS  PubMed  Google Scholar 

  37. Song X, Li S. Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal loads. Adv Mater Res 2008;33–37 PART:699–706. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.33-37.699.

  38. Babaei H, Kiani Y, Eslami MR. Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads. Acta Mech. 2018;229:3123–41. https://doi.org/10.1007/S00707-018-2134-2.

    Article  MathSciNet  Google Scholar 

  39. Yuan Y, Zhao K, Sahmani S, Safaei B. Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes. Appl Math Mech. 2020;41:587–604. https://doi.org/10.1007/s10483-020-2600-6.

    Article  MathSciNet  Google Scholar 

  40. Babaei H, Kiani Y, Eslami MR. Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment. Thin-Walled Struct. 2018;132:48–57. https://doi.org/10.1016/J.TWS.2018.08.008.

    Article  Google Scholar 

  41. Rao R, Ye Z, Yang Z, Sahmani S, Safaei B. Nonlinear buckling mode transition analysis of axial–thermal–electrical-loaded FG piezoelectric nanopanels incorporating nonlocal and couple stress tensors. Arch Civ Mech Eng. 2022;22:1–21. https://doi.org/10.1007/S43452-022-00437-1/TABLES/7.

    Article  Google Scholar 

  42. Zhao J, Wang J, Sahmani S, Safaei B. Probabilistic-based nonlinear stability analysis of randomly reinforced microshells under combined axial-lateral load using meshfree strain gradient formulations. Eng Struct 2022;262:114344. https://doi.org/10.1016/J.ENGSTRUCT.2022.114344.

  43. Wan ZQ, Li SR, Ma HW. Geometrically nonlinear analysis of functionally graded timoshenko curved beams with variable curvatures. Adv Mater Sci Eng. 2019;2019:6204145. https://doi.org/10.1155/2019/6204145.

    Article  CAS  Google Scholar 

  44. Liu Z, Yang C, Gao W, Wu D, Li G. Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int J Eng Sci. 2019;137:37–56. https://doi.org/10.1016/J.IJENGSCI.2018.12.003.

    Article  MathSciNet  CAS  Google Scholar 

  45. Sahmani S, Safaei B. Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. Appl Math Model. 2021;89:1792–813. https://doi.org/10.1016/j.apm.2020.08.039.

    Article  MathSciNet  Google Scholar 

  46. Babaei H, Kiani Y, Eslami MR. Thermomechanical nonlinear in-plane analysis of fix-ended FGM shallow arches on nonlinear elastic foundation using two-step perturbation technique. Int J Mech Mater Des. 2019;15:225–44. https://doi.org/10.1007/S10999-018-9420-Y.

    Article  CAS  Google Scholar 

  47. Yang Z, Liu A, Lai SK, Safaei B, Lv J, Huang Y, et al. Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Eng Struct 2022;250:113243. https://doi.org/10.1016/J.ENGSTRUCT.2021.113243.

  48. Sun J-H, Zhou Z-D, Sahmani S, Safaei B. Microstructural size dependency in nonlinear lateral stability of random reinforced microshells via meshfree-based applied mathematical modeling. Int J Struct Stab Dyn. 2021;21:2150164.

    Article  MathSciNet  Google Scholar 

  49. Yang Z, Yang J, Liu A, Fu J. Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Compos Struct. 2018;204:301–12. https://doi.org/10.1016/J.COMPSTRUCT.2018.07.072.

    Article  Google Scholar 

  50. Yang Z, Huang Y, Liu A, Fu J, Wu D. Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading. Appl Math Model. 2019;70:315–27. https://doi.org/10.1016/J.APM.2019.01.024.

    Article  MathSciNet  Google Scholar 

  51. Yue X-G, Sahmani S, Luo H, Safaei B. Nonlocal strain gradient-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams. Arch Civ Mech Eng. 2023;23:21. https://doi.org/10.1007/s43452-022-00548-9.

    Article  Google Scholar 

  52. Nikrad SF, Kanellopoulos A, Bodaghi M, Chen ZT, Pourasghar A. Large deformation behavior of functionally graded porous curved beams in thermal environment. Arch Appl Mech. 2021;91:2255–78. https://doi.org/10.1007/S00419-021-01882-9.

    Article  Google Scholar 

  53. Zuo D, Safaei B, Sahmani S, Ma G. Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors. Appl Math Mech 2022 436 2022;43:825–44. https://doi.org/10.1007/S10483-022-2851-7.

  54. Alshenawy R, Sahmani S, Safaei B, Elmoghazy Y, Al-Alwan A, Nuwairan M Al. Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM strain gradient formulations. Appl Math Comput 2023;439:127623. https://doi.org/10.1016/J.AMC.2022.127623.

  55. Van TH, Duc ND. Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions. Appl Math Model. 2014;38:2848–66. https://doi.org/10.1016/J.APM.2013.11.015.

    Article  MathSciNet  Google Scholar 

  56. Affdl JCH, Kardos JL. The Halpin-Tsai equations: A review. Polym Eng Sci. 1976;16:344–52. https://doi.org/10.1002/PEN.760160512.

    Article  Google Scholar 

  57. Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313. https://doi.org/10.1016/j.jmps.2015.02.001.

    Article  ADS  MathSciNet  Google Scholar 

  58. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10:425–35. https://doi.org/10.1016/0020-7225(72)90050-X.

    Article  Google Scholar 

  59. Apuzzo A, Barretta R, Faghidian SA, Luciano R, Marotti de Sciarra F. Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int J Eng Sci 2018;133:99–108. https://doi.org/10.1016/j.ijengsci.2018.09.002.

  60. Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Reports. 2013;74:281–350. https://doi.org/10.1016/J.MSER.2013.08.001.

    Article  Google Scholar 

  61. Wu H, Yang J, Kitipornchai S. Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos Struct. 2017;162:244–54. https://doi.org/10.1016/J.COMPSTRUCT.2016.12.001.

    Article  Google Scholar 

  62. Luu AT, Kim N Il, Lee J. Bending and buckling of general laminated curved beams using NURBS-based isogeometric analysis. Eur J Mech - A/Solids 2015;54:218–31. https://doi.org/10.1016/J.EUROMECHSOL.2015.07.006.

  63. Öztürk H, Yeşilyurt I, Sabuncu M. In-plane stability analysis of non-uniform cross-sectioned curved beams. J Sound Vib. 2006;296:277–91. https://doi.org/10.1016/J.JSV.2006.03.002.

    Article  ADS  Google Scholar 

  64. Ganapathi M, Polit O. A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams. Appl Math Model. 2018;57:121–41. https://doi.org/10.1016/J.APM.2017.12.025.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Safaei.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Hurdoganoglu, D., Sahmani, S. et al. Nonlocal strain gradient-based nonlinear in-plane thermomechanical stability of FG multilayer micro/nano-arches. Archiv.Civ.Mech.Eng 23, 90 (2023). https://doi.org/10.1007/s43452-023-00623-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00623-9

Keywords

Navigation