Skip to main content
Log in

Characterization of the as-cast microstructure and selected properties of the X-40 Co-based superalloy produced via lost-wax casting

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

A Publisher Correction to this article was published on 27 July 2022

This article has been updated

Abstract

The X-40 Co-based superalloy is often used in the aerospace industry directly in as-cast condition and its analysis in this state is essential to understand further possible phase transformations during service. With this in mind, this work focuses on characterizing the material’s as-cast microstructure, phase transformation temperatures and oxidation resistance. Observations and analyses were performed via thermodynamic simulations, X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), scanning-transmission electron microscopy (STEM-HAADF), energy-dispersive X-ray spectroscopy (EDX), dilatometry (DIL) and differential scanning calorimetry (DSC). The microstructure of the dendritic regions consisted of the α matrix, with MC, M7C3 and M23C6 carbides being present in the interdendritic spaces. Based on DIL, it was found that precipitation of the Cr-rich carbides from the saturated α matrix may occur in the range 650–750 °C. DSC determined the incipient melting and liquidus temperatures of the X-40 superalloy during heating to be 1405 °C and 1421 °C, respectively. Based on oxidation resistance tests carried out at 860 °C, it was found that the mass gain after 500 h exposure was 3 times higher in the air than in steam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

References

  1. Davies J. ASM specialty handbook. Heat-resistant materials. ASM International: Metals Park; 1997.

    Google Scholar 

  2. Klastrom D. Wrought cobalt-base superalloys. J Mater Eng Perform. 1993;2:523–30. https://doi.org/10.1007/BF02661736.

    Article  Google Scholar 

  3. Coutsouradis D, Habraken L. Metallurgical applications of cobalt: a critical review. J Met. 1983;35:40–7. https://doi.org/10.1007/BF03338183.

    Article  Google Scholar 

  4. Singh K. Advanced materials for land based gas turbines. Trans Indian Inst Met. 2014;67(5):601–15. https://doi.org/10.1007/s12666-014-0398-3.

    Article  CAS  Google Scholar 

  5. Keyvani M, Garcin T, Fabregue D, Militzer M, Yamanaka K, Chiba A. Continous measurements of recrystallization and grain growth in cobalt super alloys. Metall Mater Trans A. 2017;48:2363–74. https://doi.org/10.1007/s11661-017-4027-8.

    Article  CAS  Google Scholar 

  6. Rahmani K, Torabian A. Influence of welding on low cycle fatigue properties of Co-based superalloy FSX-414. Trans Nonferrous Met Soc China. 2016;26:1326–35.

    Article  CAS  Google Scholar 

  7. Sims C. A history of superalloy metallurgy for superalloy metallurgists. In: Proceedings of the fifth international symposium on superalloys sponsored by the high temperature alloys Committee of the Metallurgical Society of AIME. Seven Springs, Pennsylvania, USA. October 7–11, 1984

  8. Tomaszewska A, Mikuszewski T, Moskal G, Migas D. Primary microstructure, microsegregation and precipitates characterization of an as-cast new type γ-γ’ Co-Al-Mo-Nb cobalt-based superalloy. J All Comp. 2018;750:741–9. https://doi.org/10.1016/j.jallcom.2018.03.397.

    Article  CAS  Google Scholar 

  9. Shirpay M, Kazempour-Liacy H. Failure analysis of a repaired gas turbine nozzle. J Fail Anal Prev. 2013;13:243–8. https://doi.org/10.1007/s11668-013-9667-4.

    Article  Google Scholar 

  10. Kuzucu V, Ceylan M, Celik H, Aksoy I. Microstructure and phase analyses of stellite 6 plus 6 wt.% Mo alloy. J Mater Proc Technol. 1997;69:257–63. https://doi.org/10.1016/S0924-0136(97)00027-7.

    Article  Google Scholar 

  11. Naalchian M, Kasiri-Asgarani M, Shamanian M, Bakhtiari R, Bakhsheshi-Rad H. Comprehensive microstructural investigation during dissimilar transient liquid phase bonding cobalt-based superalloys by BNi-9 amorphous interlayer foil. J Mater Res Technol. 2021;13:2144–60. https://doi.org/10.1016/j.jmrt.2021.05.069.

    Article  CAS  Google Scholar 

  12. Kuzucu V, Ceylan M, Celik H, Aksoy I. An investigation of stellite-6 alloy containing 5.0 wt% silicon. J Mater Proc Technol. 1998;79:47–51. https://doi.org/10.1016/S0924-0136(97)00452-4.

    Article  Google Scholar 

  13. Szala J, Szczotok A, Richter J, Cwajna J, Maciejny A. Selection of methods for etching carbides in MAR-M509 cobalt-base superalloy and acquisition of their images. Mat Charact. 2006;56(4–5):325–35. https://doi.org/10.1016/j.matchar.2005.11.015.

    Article  CAS  Google Scholar 

  14. Luna Ramirez A, Porcayo-Calderon J, Mazur Z, Salinas-Bravo V, Martinez-Gomez L. Microstructural changes during high temperature service of a cobalt-based superalloy first stage nozzle. Adv Mater Sci Eng. 2016;2016:1745839. https://doi.org/10.1155/2016/1745839.

    Article  CAS  Google Scholar 

  15. Rakoczy Ł, Rutkowski B, Grudzień-Rakoczy M, Cygan R, Ratuszek W, Zielińska-Lipiec A. Analysis of γ’ precipitates, carbides and nano-borides in heat-treated Ni-based superalloy using SEM, STEM-EDX and HRSTEM. Materals. 2020;13(19):4452. https://doi.org/10.3390/ma13194452.

    Article  ADS  CAS  Google Scholar 

  16. Kuzucu V, Ceylan M, Celik H, Aksoy I. Phase investigation of a cobalt base alloy containing Cr, Ni, W and C. J Mater Proc Technol. 1998;74:137–41. https://doi.org/10.1016/S0924-0136(97)00261-6.

    Article  Google Scholar 

  17. Zhao Y, Zhang Y, Zhang Y, Luo Y, Tang D, Liu H, Fu H. Deformation behavior and creep properties oof Co–Al–W-based superalloys: a review. Prog Nat Sci Mater Int. 2021;31:641–8. https://doi.org/10.1016/j.pnsc.2021.09.009.

    Article  CAS  Google Scholar 

  18. Coutsouradis D, Davin A, Lamberigts M. Cobalt-based superalloys for applications in gas turbines. Mater Sci Eng. 1987;88:11–9. https://doi.org/10.1016/0025-5416(87)90061-9.

    Article  CAS  Google Scholar 

  19. Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science. 2006;312:90–1. https://doi.org/10.1126/science.1121738.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Kamma R, Sakaguchi M, Okazaki M, Shimoda Y, Uchiyama T, Ochiai H, Watanabe M. Fatigue properties of alloy 718 overlay-coated with a Co-based X40 alloy by the micro spark coating. J Sol Mech Mater Eng. 2012;6(3):227–40. https://doi.org/10.1299/jmmp.6.227.

    Article  Google Scholar 

  21. Schoonbaert S, Huang X. Brazing and wide gap repair of X-40 using Ni-base alloys. J Eng Gas Turb Power. 2008;130:032101. https://doi.org/10.1115/1.2836743.

    Article  CAS  Google Scholar 

  22. Ghasemi A, Kolagar A, Pouranvari M. From as-cast to heat treated X-40 superalloy: effect of cooling rate after partial solution treatment on microstructural evolutions and mechanical properties. Mater Sci Eng. 2021;808:40891. https://doi.org/10.1016/j.msea.2021.140891.

    Article  CAS  Google Scholar 

  23. Lukaszewicz M, Simms N, Dudziak T, Nicholls J. Effect of steam flow rate and sample orientation on steam oxidation of ferritic and austenitic steels at 650 and 700°C. Oxid Met. 2013;79(5–6):473–548. https://doi.org/10.1007/s11085-013-9358-2.

    Article  CAS  Google Scholar 

  24. Dudziak T, Deodeshmukh V, Backert L, Sobczak N, Witkowska M, Ratuszek W, Chruściel K, Zielinski A, Sobczak J, Bruzda G. Phase investigations under steam oxidation process at 800°C for 1000 h of advanced steels and Ni-based alloys. Oxid Met. 2017;87:139–58. https://doi.org/10.1007/s11085-016-9662-8.

    Article  CAS  Google Scholar 

  25. Dudziak T, Gajewski P, Śnieżyński B, Deodeshmukh V, Witkowska M, Ratuszek W, Chruściel K. Neural network modelling studies of steam oxidised kinetic behaviour of advanced steels and ni-based alloys at 800°C for 3000 hours. Corr Sci. 2018;133(1):94–111. https://doi.org/10.1016/j.corsci.2018.01.013.

    Article  CAS  Google Scholar 

  26. Cao K, Yang W, Zhang J, Liu C, Qu P, Su H, Zhang J, Liu L. Solidification characteristics and as-cast microstructure of a Ru-containing nickel-based single crystal superalloy. J Mater Res Technol. 2021;11:474–86. https://doi.org/10.1016/j.jmrt.2021.01.043.

    Article  CAS  Google Scholar 

  27. Wyckoff R. Crystal structures. New York: Interscience; 1963.

    Google Scholar 

  28. McClune F. New X-ray powder diffraction patterns from the JCPDS associateship. Powder Diffract. 1986;1:77–99.

    Article  Google Scholar 

  29. Bowman A, Arnold G, Storms E, Nereson N. The crystal structure of Cr23C6. Acta Crystall B. 1972;28:3102–3. https://doi.org/10.1107/S0567740872007526.

    Article  CAS  Google Scholar 

  30. Sims C, Stoloff N, Hagel W. Superalloys II. New York: Wiley--Interscience; 1987.

    Google Scholar 

  31. Matysiak H, Zagorska M, Balkowiec A, Adamczyk-Cieslak B, Dobkowski K, Koralnik M, Cygan R, Nawrocki J, Cwajna J, Kurzydlowski K. The influence of the melt-pouring temperature and inoculant content on the macro and microstructure of the IN713C Ni-based superalloy. JOM. 2016;68(1):185–97. https://doi.org/10.1007/s11837-015-1672-5.

    Article  ADS  CAS  Google Scholar 

  32. Aigner K, Lengauer W, Rafaja D, Ettmayer P. Lattice parameters and thermal expansion of Ti(CxN1-x), Zr(CxN1-x), Hf(CxN1-x) and TiN1-x from 298 to 1473 K as investigated by high-temperature X-ray diffraction. J Alloys Compd. 1994;215:121–6. https://doi.org/10.1016/0925-8388(94)90828-1.

    Article  CAS  Google Scholar 

  33. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystall. 2011;44:1272–6. https://doi.org/10.1107/S0021889811038970.

    Article  CAS  Google Scholar 

  34. Guyard C, Barbangelo A, Allibert C, Driole J. Solidification path and phase equilibria in the liquid-solid range of cobalt-base alloy. J Mater Sci. 1981;16:604–12. https://doi.org/10.1007/BF02402776.

    Article  ADS  CAS  Google Scholar 

  35. Hamar-Thibault S, Durrand-Charre M, Andries B. Carbide transformation during aging of wear-resistant cobalt alloys. Metall Mater Trans A. 1982;13:545–50. https://doi.org/10.1007/BF02644417.

    Article  ADS  CAS  Google Scholar 

  36. Johansson T, Uhrenius B. Phase equilibria, isothermal reactions, and a thermodynamic study in the Co–W–C system at 1150°C. Met Sci. 1978;12(2):83–94. https://doi.org/10.1179/msc.1978.12.2.83.

    Article  CAS  Google Scholar 

  37. Jiang W, Yao X, Guan H, Hu Z. Secondary carbide precipitation in a directionally solidified cobalt-base superalloy. Metall Mater Trans A. 1999;30A:513–20. https://doi.org/10.1007/s11661-999-0043-7.

    Article  CAS  Google Scholar 

  38. Xie S, Wang T, Lu J, Yang H, Zhao G. Effects of Zr on microstructure and short-term strength in GH586. J Mater Sci Technol. 1999;15(5):415–8.

    CAS  Google Scholar 

  39. Wallace W, Holt R, Terada T. The nature of the sulfo-carbides observed in nickel-base superalloys. Metallography. 1973;6:511–26. https://doi.org/10.1016/0026-0800(73)90048-7.

    Article  CAS  Google Scholar 

  40. Kudielka H, Rohde H. Structural investigation of the carbosulfides of titanium and zirconium. Zeitschrift für Kristallographie (Crystalline Materials). 1960;114:441–56.

    ADS  Google Scholar 

  41. Lobl K, Tuma G. Carbide precipitation and carbide equilibrium in the Co–Cr–C system. Metal Sci Heat Treat. 1973;15:21–3. https://doi.org/10.1007/BF00648453.

    Article  ADS  Google Scholar 

  42. Fedoseeva A, Tkachev E, Dudko V, Dudova N, Kaibyshev R. Effect of alloying on interfacial energy of precipitation/matrix in high-chromium martensitic steeels. J Mater Sci. 2017;52:4197–209. https://doi.org/10.1007/s10853-016-0654-5.

    Article  ADS  CAS  Google Scholar 

  43. Skupień P, Radwański K, Gazdowicz J, Arabasz S, Wiedermann J, Szala J. Microstructure of MAR M509 cobalt-based superalloy in as-cast conditions and after heat treatment. PIMŻ. 2010;62(1):259–64 (in polish).

    Google Scholar 

  44. Sklenička V, Kvapilová M, Král P, Dvořák J, Svoboda M, Podhorná B, Zýka J, Hrbáček K, Joch A. Degradation processes in high-temperature creep of cast cobalt-based superalloys. Mater Charact. 2018;144:479–89. https://doi.org/10.1016/j.matchar.2018.08.006.

    Article  CAS  Google Scholar 

  45. Wagner H, Hall A. The physical metallurgy of cobalt-base superalloys. Defense metals informations center. Columbus: Battelle Memorial Institute; 1962.

    Google Scholar 

  46. Cacciamani G, Roncallo G, Wang Y, Vacchieri E, Costa A. Thermodynamic modelling of a six component (C–Co–Cr–Ni–Ta–W) system for the simulation of cobalt based alloys. J Alloys Compd. 2018;730:291–310. https://doi.org/10.1016/j.jallcom.2017.09.327.

    Article  CAS  Google Scholar 

  47. Gui W, Zhang X, Zhang H, Sun X, Zheng Q. Melting of primary carbides in a cobalt-base superalloy. J Alloys Compd. 2019;787(30):152–7. https://doi.org/10.1016/j.jallcom.2019.02.041.

    Article  CAS  Google Scholar 

  48. Gui W, Zhang H, Yang M, Jin T, Sun X, Zheng Q. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J Alloys Compd. 2017;695(25):1271–8. https://doi.org/10.1016/j.jallcom.2016.10.256.

    Article  CAS  Google Scholar 

  49. Gui W, Zhang H, Yang M, Jin T, Sun X, Zheng Q. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd. 2017;728(25):145–51. https://doi.org/10.1016/j.jallcom.2017.08.287.

    Article  CAS  Google Scholar 

  50. Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim. 2015;119:1547–53. https://doi.org/10.1007/s10973-014-4302-5.

    Article  CAS  Google Scholar 

  51. Archana M, Jagadeeswara Rao C, Ningshen S, Philip J. High-temperature air and steam oxidation and oxide layer characteristics of alloy 617. J Mater Eng Perform. 2021;30:931–43. https://doi.org/10.1007/s11665-020-05367-8.

    Article  CAS  Google Scholar 

  52. Dooley R. Program on technology innovation: oxide growth and exfoliation on alloys exposed to steam. California: Energy Power Research Institute EPRI; 2007.

    Google Scholar 

  53. Buscail H, Rolland R, Riffard F, Issartel C, Perrier S. Cobalt based alloy oxidation at high temperatures. HAL. 2017: 1–10. https://hal.archives-ouvertes.fr/hal-01628823

  54. Yeh A, Wang S, Cheng C, Chang Y, Chang S. Oxidation behaviour of Si-bearing Co-based alloys. Oxid Met. 2016;86:99–112. https://doi.org/10.1007/s11085-016-9623-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding by National Centre for Research and Development, Poland, under grant POIR.01.01.01-00-0631/18. The oxidation resistance experiments were supported by the Polish National Science Centre (Preludium 14) under the grant for young scientists (M.G.R.) 2017/27/N/ST8/01801. M.G.R. thanks the European Virtual Institute on Knowledge-based Multifunctional Materials (KMM‐VIN) for the fellowship to spend a research period at the Institute of Materials Research, Slovak Academy of Sciences. O.M. was supported by the Scientific Grant Agency under contract VEGA project No. 2/0086/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Rakoczy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: one sentence in section 3.4 was incomplete.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakoczy, Ł., Grudzień-Rakoczy, M., Cygan, R. et al. Characterization of the as-cast microstructure and selected properties of the X-40 Co-based superalloy produced via lost-wax casting. Archiv.Civ.Mech.Eng 22, 143 (2022). https://doi.org/10.1007/s43452-022-00466-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00466-w

Keywords

Navigation