Skip to main content
Log in

To determine the performance of metakaolin-based fiber-reinforced geopolymer concrete with recycled aggregates

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the present research, geopolymer concrete for construction applications comprising metakaolin was evaluated by partial addition of recycled coarse aggregates and steel fibers to develop eco-friendly cementitious composites. Mechanical and durability characteristics of geopolymer composites were then assessed such as compression, splitting tensile and flexural strength, water absorption, and drying shrinkage. It was observed that with the inclusion of steel fibers, no significant change in compressive strength occurred. Mixtures were prepared with a binder amount of 440 kg/m3 in total. The recycled coarse aggregates were substituted with natural coarse aggregates at a rate of 15, 25, and 35% by their weight. The inclusion of steel fibers in the mixes was 1.0, 2.0, and 3.0% of metakaolin content. Because of the addition of steel fibers, the split tensile strength, flexural strength, and drying shrinkage were improved significantly. The load–displacement graph showed that the fracture toughness of geopolymer composites was enhanced due to the inclusion of steel fibers which leads to maximum loads capacity. From the stress–strain curve, it was observed that the geopolymer paste and the steel fibers had a strong bond, which will help in restraining the propagation of cracks. From XRD analysis, it was shown that a mix having 25% recycled coarse aggregates and 3.0% steel fibers in metakaolin-based geopolymer concrete results in environment-friendly composite with suitable strength and durability that will help in bringing sustainability to the construction industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data can be provided by request from the corresponding author.

References

  1. Zaid O, Hashmi SRZ, Aslam F, Abedin ZU, Ullah A. Experimental study on the properties improvement of hybrid graphene oxide fiber-reinforced composite concrete. Diam Relat Mater. 2022. https://doi.org/10.1016/j.diamond.2022.108883.

    Article  Google Scholar 

  2. Zaid O, Aslam F, Alabduljabbar H. To evaluate the performance of waste marble powder and wheat straw ash in steel fiber reinforced concrete. Struct Concr. 2021. https://doi.org/10.1002/suco.202100736.

    Article  Google Scholar 

  3. Naik TR. Sustainability of concrete construction. Pract Period Struct Des Constr. 2008;13(2):98–103.

    Article  Google Scholar 

  4. Zaid O, Ahmad J, Siddique MS, Aslam F, Alabduljabbar H, Khedher KM. A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Sci Rep. 2021;11(1):1–14.

    Article  Google Scholar 

  5. Medina G, Del Bosque IFS, Frías M, De Rojas MIS, Medina C. Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): Scientific and technical considerations. J Clean Prod. 2017;148:467–76.

    Article  CAS  Google Scholar 

  6. Ascensao G, Seabra MP, Aguiar JB, Labrincha JA. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability. J Clean Prod. 2017;148:23–30.

    Article  CAS  Google Scholar 

  7. Diaz-Loya EI, Allouche E, Vaidya S. Mechanical properties of fly-ash-based geopolymer concrete. Aci Mater J. 2011;108:300–6.

    CAS  Google Scholar 

  8. Zaid O, Ahmad J, Siddique MS, Aslam F. Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete. Front Mater. 2021;8:14–28. https://doi.org/10.3389/fmats.2021.665625.

    Article  Google Scholar 

  9. Wardhono A, Law DW, Strano A. The strength of alkali-activated slag/fly ash mortar blends at ambient temperature. Procedia Eng. 2015;125:650–6. https://doi.org/10.1016/j.proeng.2015.11.095.

    Article  CAS  Google Scholar 

  10. SOM. Low-clinker cements with low water demand. J Mater Civ Eng. 2020;32(7):6020008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003241.

  11. Smirnova O, Kazanskaya L, Koplík J, Tan H, Gu X. Concrete based on clinker-free cement: selecting the functional unit for environmental assessment. Sustainability. 2021. https://doi.org/10.3390/su13010135.

    Article  Google Scholar 

  12. Verdolotti L, Iannace S, Lavorgna M, Lamanna R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J Mater Sci. 2008;43(3):865–73.

    Article  ADS  CAS  Google Scholar 

  13. Mohseni E. Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr Build Mater. 2018;186:904–11. https://doi.org/10.1016/j.conbuildmat.2018.08.032.

    Article  CAS  Google Scholar 

  14. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917–33.

    Article  ADS  CAS  Google Scholar 

  15. Mehrinejadhotbehsara M, Mohseni E, Ozbakkaloglu T, Ranjbar MM. Durability characteristics of self-compacting concrete incorporating pumice and metakaolin. J Mater Civ Eng. 2017;29(11):4017218.

    Article  Google Scholar 

  16. Ramlochan T, Thomas M, Gruber KA. The effect of metakaolin on alkali–silica reaction in concrete. Cem Concr Res. 2000;30(3):339–44.

    Article  CAS  Google Scholar 

  17. Kamseu E, Cannio M, Obonyo EA, Tobias F, Bignozzi MC, Sglavo VM, Leonelli C. Metakaolin-based inorganic polymer composite: Effects of fine aggregate composition and structure on porosity evolution, microstructure and mechanical properties. Cem Concr Compos. 2014;53:258–69.

    Article  CAS  Google Scholar 

  18. Pouhet R, Cyr M. Formulation and performance of flash metakaolin geopolymer concretes. Constr Build Mater. 2016;120:150–60.

    Article  CAS  Google Scholar 

  19. Yang T, Zhu H, Zhang Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr Build Mater. 2017;153:284–93.

    Article  CAS  Google Scholar 

  20. Saafi M, Tang L, Fung J, Rahman M, Liggat J. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem Concr Res. 2015. https://doi.org/10.1016/j.cemconres.2014.08.011.

    Article  Google Scholar 

  21. Saradar A, Tahmouresi B, Mohseni E, Shadmani A. Restrained shrinkage cracking of fiber-reinforced high-strength concrete. Fibers. 2018;6(1):12.

    Article  Google Scholar 

  22. J Clarke, C Peaston, N Swannell. Guidance on the use of macro-synthetic-fibre reinforced concrete. The Concrete Society. Technical Report, 2007.

  23. Allahverdi A, Škvára F. Sulfuric acid attack on hardened paste of geopolymer cements Part 1. Mechanism of corrosion at relatively high concentrations. Ceram Silikaty. 2005;49:225–9.

    CAS  Google Scholar 

  24. Ahmad J, Zaid O, Aslam F, Shahzaib M, Ullah R, Alabduljabbar H, Khedher KM. A study on the mechanical characteristics of glass and nylon fiber reinforced peach shell lightweight concrete. Materials (Basel). 2021;14(16):21–41. https://doi.org/10.3390/ma14164488.

    Article  CAS  Google Scholar 

  25. Mohseni E, Yazdi MA, Miyandehi BM, Zadshir M, Ranjbar MM. Combined effects of metakaolin, rice husk ash, and polypropylene fiber on the engineering properties and microstructure of mortar. J Mater Civ Eng. 2017;29(7):4017025.

    Article  Google Scholar 

  26. Nath P, Sarker P. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater. 2017;130:22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034.

    Article  CAS  Google Scholar 

  27. Afroughsabet V, Biolzi L, Ozbakkaloglu T. High-performance fiber-reinforced concrete: a review. J Mater Sci. 2016;51:1–35. https://doi.org/10.1007/s10853-016-9917-4.

    Article  ADS  CAS  Google Scholar 

  28. Smirnova OM, de Navascués I, Mikhailevskii VR, Kolosov OI, Skolota NS. Sound-absorbing composites with rubber crumb from used tires. Appl Sci. 2021. https://doi.org/10.3390/app11167347.

    Article  Google Scholar 

  29. AE Richardson. Compressive strength of concrete with polypropylene fibre additions. Struct Surv. 2006.

  30. Afroughsabet V, Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr Build Mater. 2015;94:73–82.

    Article  CAS  Google Scholar 

  31. Punurai W, Kroehong W, Saptamongkol A, Chindaprasirt P. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr Build Mater. 2018;186:62–70.

    Article  CAS  Google Scholar 

  32. High C, Seliem HM, El-Safty A, Rizkalla SH. Use of basalt fibers for concrete structures. Constr Build Mater. 2015;96:37–46.

    Article  Google Scholar 

  33. Zaid O, Mukhtar FM, M-García R, El Sherbiny MG, Mohamed AM. Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler. Case Stud Constr Mater. 2022;16:e00939. https://doi.org/10.1016/j.cscm.2022.e00939.

    Article  Google Scholar 

  34. Bhutta A, Borges PHR, Zanotti C, Farooq M, Banthia N. Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem Concr Compos. 2017;80:31–40.

    Article  CAS  Google Scholar 

  35. Ghalehnovi M, Karimipour A, Anvari A, de Brito J. Flexural strength enhancement of recycled aggregate concrete beams with steel fibre-reinforced concrete jacket. Eng Struct. 2021;240: 112325. https://doi.org/10.1016/j.engstruct.2021.112325.

    Article  Google Scholar 

  36. Ahmad J, Alalaien RNS, Manan A, Zaid O, Ahmad M. Evaluating the effects of flexure cracking behaviour of beam reinforced with steel fibres from environment affect. J Green Eng. 2020;10:4998–5016.

    Google Scholar 

  37. Nuaklong P, Sata V, Chindaprasirt P. Influence of recycled aggregate on fly ash geopolymer concrete properties. J Clean Prod. 2016;112:2300–7.

    Article  CAS  Google Scholar 

  38. Khan Q, Mushtaq M, Khan S, Kiani M, Zaman F, Khan K, Mehmood I, Tahir K, Tareen AK, Khan U, Leying Z. Enhancement of mechanical and electrical properties for in-situ compatibilization of immiscible polypropylene/polystyrene blends. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/ab3599.

    Article  Google Scholar 

  39. M Ali, M Mushtaq, M Ahmed, R Abbas. effect of oxidant concentration on the conductivity of polyaniline (Pani). 2016.

  40. Chopra D, Siddique R. Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst Eng. 2015;130:72–80.

    Article  Google Scholar 

  41. Muthupriya P, Manjunath NV, Keerdhana B. Strength study on fiber reinforced self-compacting concrete with fly ash and GGBFS. Int J Adv Struct Geotech Eng. 2014;3(2):75–9.

    Google Scholar 

  42. Thomas J, Thaickavil NN, Wilson PM. Strength and durability of concrete containing recycled concrete aggregates. J Build Eng. 2018;19:349–65.

    Article  Google Scholar 

  43. Malešev M, Radonjanin V, Marinković S. Recycled concrete as aggregate for structural concrete production. Sustainability. 2010;2(5):1204–25. https://doi.org/10.3390/su2051204.

    Article  Google Scholar 

  44. Al-Majidi MH, Lampropoulos A, Cundy AB. Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr Build Mater. 2017;139:286–307.

    Article  CAS  Google Scholar 

  45. C. ASTM. 33/C33M, Stand Specif Concr aggregates. Annu B ASTM Stand 2008;4:498–505.

  46. Alves L, Leklou N, de Barros S. A comparative study on the effect of different activating solutions and formulations on the early stage geopolymerization process. MATEC Web Conf. 2020;322:1039. https://doi.org/10.1051/matecconf/202032201039.

    Article  CAS  Google Scholar 

  47. Puertas F, S Martı́nez-Ramı́rez, S Alonso, T Vázquez,. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem Concr Res. 2000;30(10):1625–32. https://doi.org/10.1016/S0008-8846(00)00298-2.

    Article  CAS  Google Scholar 

  48. D Hardjito. ACI Materials. Journal. 2004; 467–472.

  49. C. ASTM. “ASTM C494,” Stand. Specif. Chem. Admixtures Concr. ASTM Int.

  50. ASTM C 143. Standard test method for slump of hydraulic-cement concrete. 2015.

  51. ASTM C 642. Standard test method for specific gravity, absorption and voids in hardened concrete. Annual Book of ASTM Standards, West Conshohocken. 1997.

  52. ASTM C 496/-11. Standard test method for splitting tensile strength of cylindrical concrete specimens. 2011.

  53. A. Standard. “C78. 2010,” Stand. Test Method Flexural Strength Concr. (Using Simple Beam with Third-Point Load. (ASTM C78–10). West Conshohocken, PA ASTM Int., 2010.

  54. Sun W, Chen H, Luo X, Qian H. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cem Concr Res. 2001;31(4):595–601.

    Article  CAS  Google Scholar 

  55. Das CS, Dey T, Dandapat R, Mukharjee BB, Kumar J. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Constr Build Mater. 2018;189:649–59. https://doi.org/10.1016/j.conbuildmat.2018.09.036.

    Article  CAS  Google Scholar 

  56. Ahmad J, Zaid O, Pérez CL-C, Martínez-García R, López-Gayarre F. Experimental research on mechanical and permeability properties of nylon fiber reinforced recycled aggregate concrete with mineral admixture. Appl Sci. 2022. https://doi.org/10.3390/app12020554.

    Article  Google Scholar 

  57. Anastasiou E, Georgiadis Filikas K, Stefanidou M. Utilization of fine recycled aggregates in concrete with fly ash and steel slag. Constr Build Mater. 2014;50:154–61. https://doi.org/10.1016/j.conbuildmat.2013.09.037.

    Article  Google Scholar 

  58. Nuaklong P, Wongsa A, Boonserm K, Ngohpok C, Jongvivatsakul P, Sata V, Sukontasukkul P, Chindaprasirt P. Enhancement of mechanical properties of fly ash geopolymer containing fine recycled concrete aggregate with micro carbon fiber. J Build Eng. 2021;41: 102403. https://doi.org/10.1016/j.jobe.2021.102403.

    Article  Google Scholar 

  59. Villaquirán-Caicedo M, Mejia R, Gallego N. A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Mater Constr. 2017;67:117. https://doi.org/10.3989/mc.2017.02316.

    Article  CAS  Google Scholar 

  60. Rahal K. Mechanical properties of concrete with recycled coarse aggregate. Build Environ. 2007;42(1):407–15.

    Article  Google Scholar 

  61. ACI 318–14. ACI 318–14 Building code requirements for structural concrete and commentary. Farmington Hills: American Concrete Institute; 2014.

    Google Scholar 

  62. Carneiro JA, Lima PRL, Leite MB, Toledo Filho RD. Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem Concr Compos. 2013;46(65–72):2014. https://doi.org/10.1016/j.cemconcomp.2013.11.006.

    Article  CAS  Google Scholar 

  63. Mohseni E, Ranjbar MM, Yazdi MA, Hosseiny SS, Roshandel E. The effects of silicon dioxide, iron (III) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash. Mag Concr Res. 2015;67(20):1112–24.

    Article  Google Scholar 

  64. Kou SC, Poon CS, Etxeberria M. Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cem Concr Compos. 2014;53:73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.

    Article  CAS  Google Scholar 

  65. Pan Z, Sanjayan J, Rangan B. An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature. J Mater Sci. 2009;44:1873–80. https://doi.org/10.1007/s10853-009-3243-z.

    Article  ADS  CAS  Google Scholar 

  66. Hussin M, Putra Jaya R, Mirza J, Ariffin MA, Bhutta A. Performance of blended ash geopolymer concrete at elevated temperatures. Mater Struct. 2014. https://doi.org/10.1617/s11527-014-0251-5.

    Article  Google Scholar 

  67. Rashad A, Zeedan S. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater. 2011;25:3098–107. https://doi.org/10.1016/j.conbuildmat.2010.12.044.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Researchers Supporting Project number (RSP-2021/343), King Saud University, Riyadh, Saudi Arabia.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama Zaid.

Ethics declarations

Conflict of interest

No conflict exists between the authors.

Ethical approval

All authors approve that the research was performed under all the ethical norms.

Consent to publish

All authors agree to publish the paper.

Consent to participate

All authors consent to participate in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaid, O., Martínez-García, R., Abadel, A.A. et al. To determine the performance of metakaolin-based fiber-reinforced geopolymer concrete with recycled aggregates. Archiv.Civ.Mech.Eng 22, 114 (2022). https://doi.org/10.1007/s43452-022-00436-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00436-2

Keywords

Navigation