Skip to main content

Advertisement

Log in

Analysis of annealing on the micro-porosity and ductility of squeeze-casted Al7050 alloy for the structural applications

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Squeeze casting has emerged as an attractive alternative for the casting of aluminum alloys to boost the mechanical and microstructural attributes. However, the alloys practiced in structural applications where ductility is considered a key characteristic, additional heat treatment processes are opted after casting. Considering the industrial applications of Al7050, the current study focused on manufacturing defect-free casting for structural applications. For this purpose, three key process variables including squeeze pressure (SP), melt temperature (MT) and die temperature (DT) have been preferred to improve the percentage elongation, ultimate tensile strength and hardness with minimal casting defects. Annealing treatment is preferred to further advance the ductile behavior of the squeeze-casted Al7050 alloy. Among different process variables, SP has a significant contribution in raising the mechanical properties followed by MT and DT. Taguchi-based Grey relational analysis (GRA) has been used to attain the optimal level of input parameters (SP = 135 MPa, MT, 740 °C and DT = 240 °C) for the superior microstructural and mechanical attributes simultaneously. Microstructural investigations revealed that application of high SP and DT with reasonable MT significantly improved the grain structure and minimized the typical casting defects including micro-voids, porosity and shrinkage cavities. Annealing treatment has been observed productive for improving ductility and reducing the casting defects specifically micro-porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The paper has no associated data.

Abbreviations

SP:

Squeeze pressure

MT:

Melt temperature

DT:

Die temperature

UTS:

Ultimate tensile strength

EL:

Percentage elongation

ANOVA:

Analysis of variance

GRA:

Grey relational analysis

References

  1. Shin J, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications. J Alloy Compd. 2017;698:577–90.

    Article  CAS  Google Scholar 

  2. Raza MH, et al. Investigating the effects of gating design on mechanical properties of aluminum alloy in sand casting process. J King Saud Univ Eng Sci. 2021;33(3):201–12.

    Google Scholar 

  3. Raza MH, et al. Modeling of the mechanical properties of directionally solidified Al-4.3% Cu alloy using response surface methodology. Int J Adv Manuf Technol. 2019;103(9):3913–25.

    Article  Google Scholar 

  4. Xinyu C, et al. Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning. Mater Res. 2020;7(4): 046506.

    Google Scholar 

  5. Jahangiri A, et al. The effect of pressure and pouring temperature on the porosity, microstructure, hardness and yield stress of AA2024 aluminum alloy during the squeeze casting process. J Mater Process Technol. 2017;245:1–6.

    Article  CAS  Google Scholar 

  6. Adithiyaa T, Chandramohan D, Sathish T. Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater Today Proc. 2020;21:1000–7.

    Article  CAS  Google Scholar 

  7. Liu T, et al. An investigation into aluminum–aluminum bimetal fabrication by squeeze casting. Mater Des. 2015;68:8–17.

    Article  CAS  Google Scholar 

  8. Ali MA, et al. Evaluating the effects of as-casted and aged overcasting of Al-Al joints. Int J Adv Manuf Technol. 2018;96(1):1377–92.

    Article  Google Scholar 

  9. Kridli GT, Friedman PA, Boileau JM. 7—manufacturing processes for light alloys. In: Mallick PK, editor. Materials, design and manufacturing for lightweight vehicles. Sawston: Woodhead Publishing; 2010. p. 235–74.

    Chapter  Google Scholar 

  10. Chong L, et al. Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al−Si alloy with rheo-squeeze casting. Trans Nonferrous Met Soc China. 2019;29(2):253–62.

    Article  MathSciNet  Google Scholar 

  11. Ali MA, et al. Mechanical characterization of aged AA2026-AA2026 overcast joints fabricated by squeeze casting. Int J Adv Manuf Technol. 2020;107(7):3277–97.

    Article  Google Scholar 

  12. Zhou B, et al. Hot cracking tendency test and simulation of 7075 semi-solid aluminium alloy. Trans Nonferrous Met Soc China. 2020;30(2):318–32.

    Article  MathSciNet  CAS  Google Scholar 

  13. Li Y, Yang H, Xing Z. Numerical simulation and process optimization of squeeze casting process of an automobile control arm. Int J Adv Manuf Tchnol. 2017;88(1):941–7.

    Article  Google Scholar 

  14. Senthil P, Amirthagadeswaran KS. Experimental study and squeeze casting process optimization for high quality AC2A aluminium alloy castings. Arab J Sci Eng. 2014;39(3):2215–25.

    Article  CAS  Google Scholar 

  15. Natrayan L, Kumar MS, Palanikumar K. Optimization of squeeze cast process parameters on mechanical properties of Al2O3/SiC reinforced hybrid metal matrix composites using taguchi technique. Mater Res Express. 2018;5(6): 066516.

    Article  ADS  Google Scholar 

  16. Patel GCM, Shettigar AK, Parappagoudar MB. A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J Manuf Process. 2018;32:199–212.

    Article  Google Scholar 

  17. Karthik A, et al. The optimization of squeeze casting process parameter for AA2219 alloy by using the Taguchi method. Mater Today Proc. 2020;27:2556–61.

    Article  CAS  Google Scholar 

  18. Zhang P, et al. Analysis on the tool wear behavior of 7050–T7451 aluminum alloy under ultrasonic elliptical vibration cutting. Wear. 2021;466–467: 203538.

    Article  Google Scholar 

  19. Edalati K, Horita Z, Valiev RZ. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci Rep. 2018;8(1):6740.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Ali MA, Ishfaq K, Jawad M. Evaluation of surface quality and mechanical properties of squeeze casted AA2026 aluminum alloy using response surface methodology. Int J Adv Manuf Technol. 2019;103(9):4041–54.

    Article  Google Scholar 

  21. Wang B, et al. Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Trans Nonferrous Met Soc China. 2015;25(8):2481–9.

    Article  CAS  Google Scholar 

  22. Park JM, et al. Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2018;728:251–8.

    Article  CAS  Google Scholar 

  23. Ma P, et al. Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting. Metals. 2014;4(1):28–36.

    Article  Google Scholar 

  24. Ghiaasiaan R, Zeng X, Shankar S. Controlled diffusion solidification (CDS) of Al-Zn-Mg-Cu (7050): microstructure, heat treatment and mechanical properties. Mater Sci Eng A. 2014;594:260–77.

    Article  CAS  Google Scholar 

  25. Prashanth KG, et al. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A. 2014;590:153–60.

    Article  CAS  Google Scholar 

  26. Masemola K, Popoola P, Malatji N. The effect of annealing temperature on the microstructure, mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic high entropy alloy. J Mark Res. 2020;9(3):5241–51.

    CAS  Google Scholar 

  27. Imran M. ARA Khan, Characterization of Al-7075 metal matrix composites: a review. J Mater Res Technol. 2019;8(3):3347–56.

    Article  MathSciNet  CAS  Google Scholar 

  28. Mao Z, et al. Effects of annealing temperature on the interfacial microstructure and bonding strength of Cu/Al clad sheets produced by twin-roll casting and rolling. J Mater Process Technol. 2020;285: 116804.

    Article  CAS  Google Scholar 

  29. Maj J, et al. Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting. Mater Sci Eng A. 2018;715:154–62.

    Article  CAS  Google Scholar 

  30. Kaiser R, et al. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting. J Mech Behav Biomed Mater. 2013;24:53–63.

    Article  CAS  PubMed  Google Scholar 

  31. Christy JV, et al. Processing, properties, and microstructure of recycled aluminum alloy composites produced through an optimized stir and squeeze casting processes. J Manuf Process. 2020;59:287–301.

    Article  Google Scholar 

  32. Raza MH, et al. Investigation of surface roughness in face milling processes. Int J Adv Manuf Technol. 2020;111(9):2589–99.

    Article  Google Scholar 

  33. Zou Y. Phase equilibria and solidification of Al rich Al-Cu-Mg alloys. PhD Thesis. University of Wisconsin, Madison. 1997.

  34. Campbell J. Complete casting handbook: metal casting processes, metallurgy, techniques and design. Oxford: Butterworth-Heinemann; 2015.

    Google Scholar 

  35. Tong X, Zhang H, Li DY. Effect of annealing treatment on mechanical properties of nanocrystalline α-iron: an atomistic study. Sci Rep. 2015;5(1):8459.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hassasi SA, Abbasi M, Hosseinipour SJ. Parametric investigation of squeeze casting process on the microstructure characteristics and mechanical properties of A390 aluminum alloy. Int J Metalcast. 2020;14(1):69–83.

    Article  CAS  Google Scholar 

  37. Zu-de Z. Solid-liquid forming theory and technology of composites. Beijing: Metallurgical Industry Press; 2008.

    Google Scholar 

  38. Bin S-B, et al. Influence of technical parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting. Trans Nonferrous Met Soc China. 2013;23(4):977–82.

    Article  CAS  Google Scholar 

  39. Liu X, Zhao Q, Jiang Q. Effects of cooling rate and TiC nanoparticles on the microstructure and tensile properties of an Al–Cu cast alloy. Mater Sci Eng A. 2020;790: 139737.

    Article  CAS  Google Scholar 

  40. Zhang K, Fu Z. Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys. Intermetallics. 2012;28:34–9.

    Article  CAS  Google Scholar 

  41. Zheng YG, et al. Roles of grain boundary and dislocations at different deformation stages of nanocrystalline copper under tension. Phys Lett A. 2009;373(5):570–4.

    Article  ADS  CAS  Google Scholar 

  42. Kumar R, Nicola L, Van der Giessen E. Density of grain boundaries and plasticity size effects: a discrete dislocation dynamics study. Mater Sci Eng A. 2009;527(1):7–15.

    Article  Google Scholar 

  43. Hajjari E, Divandari M. An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy. Mater Des. 2008;29(9):1685–9.

    Article  CAS  Google Scholar 

  44. Chen S-Y, et al. Effects of melt temperature on as-cast structure and mechanical properties of AZ31B magnesium alloy. Trans Nonferrous Met Soc China. 2013;23(6):1602–9.

    Article  CAS  Google Scholar 

  45. Tajally M, Emadoddin E. Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. Mater Des. 2011;32(3):1594–9.

    Article  CAS  Google Scholar 

  46. Raji A, Khan RH. Effects of pouring temperature and squeeze pressure on Al-8% Si alloy squeeze cast parts. AU JT. 2006;9(4):229–37.

    Google Scholar 

  47. Souissi N, et al. Optimization of squeeze casting parameters for 2017 a wrought Al alloy using Taguchi method. Metals. 2014;4(2):141–54.

    Article  Google Scholar 

  48. Xiaowu HU, Fanrong AI, Hong YA. Influences of pouring temperature and cooling rate on microstructure and mechanical properties of casting Al-Si-Cu aluminum alloy. Acta Metall Sin (English Letters). 2012;25(4):272–8.

    Google Scholar 

  49. Gurusamy P, Prabu SB, Paskaramoorthy R. Influence of processing temperatures on mechanical properties and microstructure of squeeze cast aluminum alloy composites. Mater Manuf Process. 2015;30(3):367–73.

    Article  CAS  Google Scholar 

  50. Chen R-Y, et al. Effects of annealing temperature on the mechanical properties and sensitization of 5083–H116 aluminum alloy. Proc Inst Mech Eng Part L J Mater Des Appl. 2013;229(4):339–46.

    ADS  Google Scholar 

  51. Montgomery DC. Design and analysis of experiments. New York: Wiley; 2017.

    Google Scholar 

  52. Krishnaiah K, Shahabudeen P. Applied design of experiments and Taguchi methods. Delhi: PHI Learning Pvt. Ltd; 2012.

    Google Scholar 

  53. Ishfaq K, et al. Optimization of WEDM for precise machining of novel developed Al6061–7.5% SiC squeeze-casted composite. Int J Adv Manuf Technol. 2020;111(7):2031–49.

    Article  Google Scholar 

  54. Leung WK, Raza MH, Zhong RY. Optimization of support structure in multi-articulated joints of non-assembly mechanisms. Proc CIRP. 2021;100:726–31.

    Article  Google Scholar 

  55. Raza MH, et al. Investigating the effects of different electrodes on Al6061-SiC-7.5 wt% during electric discharge machining. Int J Adv Manuf Technol. 2018;99(9):3017–34.

    Article  Google Scholar 

  56. Raza MH, et al. Cryogenic treatment analysis of electrodes in wire electric discharge machining of squeeze casted Al2024/Al2O3/W composite. Int J Adv Manuf Technol. 2021;116(3):1179–98.

    Article  Google Scholar 

  57. Wojciechowski S, et al. Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis Eng. 2018;51:582–96.

    Article  Google Scholar 

  58. Raza MH, et al. Grain selection and crystal orientation in single-crystal casting: state of the art. Cryst Res Technol. 2019;54(2):1800177.

    Article  Google Scholar 

Download references

Funding

This study has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Huzaifa Raza.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mufti, N.A., Islam, M.u., Ali, M.A. et al. Analysis of annealing on the micro-porosity and ductility of squeeze-casted Al7050 alloy for the structural applications. Archiv.Civ.Mech.Eng 22, 107 (2022). https://doi.org/10.1007/s43452-022-00428-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00428-2

Keywords

Navigation