Skip to main content
Log in

Effect of friction surfacing parameters on the microstructural, mechanical properties, and wear characteristic of Al-Cu-Mg alloy coating reinforced by nickel aluminide

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This research has studied the microstructure, mechanical properties, and tribological properties of AA2024-Al3NiCu composite coating fabricated by friction surfacing. The Al3NiCu intermetallic was created in the aluminum matrix by adding nickel during the stir casting process and then performing the homogenization treatment. The results showed that with increasing the axial feeding rate from 87.5 to 125 mm/min and the rotational speed from 600 to 800 rpm, the coating efficiency grew up to 79%. Moreover, no significant microstructural differences (grain size, precipitate size, and morphology) were observed in different parts of the coating. Applying the coating at a rotational speed of 800 rpm, a traverse speed of 125 mm/min, and an axial feeding rate of 125 mm/min raised the hardness and shear strength of the AA2024 aluminum alloy substrate by 17% and 21%, respectively, while lowering its wear rate by 37%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Woźniak A, Staszuk M, Reimann Ł, Bialas O, Brytan Z, Voinarovych S, et al. The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application. Arch Civ Mech Eng. 2021;21(4):1–21.

    Article  Google Scholar 

  2. Mostafavi M, Taghiabadi R, Jafarzadegan M. Optimizing the mechanical properties of Al-4.5 Cu-xSi alloys through multi-pass friction stir processing and post-process aging. Arch Civ Mech Eng. 2022;22(1):1–15.

    Article  Google Scholar 

  3. Miranda RM, Gandra JP, Vilaca P, Quintino L, Santos TG. Surface modification by solid state processing. Sawston: Woodhead Publishing; 2013.

    Google Scholar 

  4. Gandra J, Krohn H, Miranda R, Vilaça P, Quintino L, Dos Santos J. Friction surfacing—a review. J Mater Process Technol. 2014;214(5):1062–93.

    Article  Google Scholar 

  5. Pirhayati P, Aval HJ. An investigation on thermo-mechanical and microstructural issues in friction surfacing of Al–Cu aluminum alloys. Mater Res Express. 2019;6(5):056550.

    Article  ADS  CAS  Google Scholar 

  6. Akram J, Kalvala PR, Misra M. Effect of process parameters on friction surfaced coating dimensions. Adv. Mater. Res. 2014;922:280–285.

    Article  Google Scholar 

  7. Kallien Z, Rath L, Roos A, Klusemann B. Experimentally established correlation of friction surfacing process temperature and deposit geometry. Surf Coat. 2020;397:126040.

    Article  CAS  Google Scholar 

  8. Gandra J, Vigarinho P, Pereira D, Miranda R, Velhinho A, Vilaça P. Wear characterization of functionally graded Al–SiC composite coatings produced by friction surfacing. Mater Des (1980–2015). 2013;52:373–83.

    Article  CAS  Google Scholar 

  9. Nakama D, Katoh K, Tokisue H. Fabrication of 6061 aluminum alloy/A12O3 particle composites by friction surfacing. Keikinzoku J Jpn Inst Light Met. 2008;58(7):299–304.

    Article  CAS  Google Scholar 

  10. Reddy GM, Rao KS, Mohandas T. Friction surfacing: novel technique for metal matrix composite coating on aluminium–silicon alloy. Surf Eng. 2009;25(1):25–30.

    Article  CAS  Google Scholar 

  11. Reddy GM, Prasad KS, Rao KS, Mohandas T. Friction surfacing of titanium alloy with aluminium metal matrix composite. Surf Eng. 2011;27(2):92–8.

    Article  CAS  Google Scholar 

  12. Oliveira PHF, Galvis JC, Martins JP, Carvalho ALM. Application of friction surfacing to the production of aluminum coatings reinforced with Al2O3 particles. Mater Res. 2017;20:603–20.

    Article  Google Scholar 

  13. Sharma A, Sagar S, Mahto RP, Sahoo B, Pal SK, Paul J. Surface modification of Al6061 by graphene impregnation through a powder metallurgy assisted friction surfacing. Surf Coat. 2018;337:12–23.

    Article  CAS  Google Scholar 

  14. Sharma A, Tripathi A, Narsimhachary D, Mahto RP, Paul J. Surface alteration of aluminium alloy by an exfoliated graphitic tribolayer during friction surfacing using a consumable graphite rich tool. Surf Topogr. 2019;7(4):045015.

    Article  CAS  Google Scholar 

  15. Mohanasundaram S, Vijay S, Karthikeyan M. A Review on Developing Surface Composites Using Friction Surfacing. Adv. Mater. Res. 2016;852:402–410.

    Google Scholar 

  16. Esther I, Dinaharan I, Murugan N. Microstructure and wear characterization of AA2124/4wt% B4C nano-composite coating on Ti-6Al-4V alloy using friction surfacing. Trans Nonferr Metal Soc. 2019;29(6):1263–74.

    Article  CAS  Google Scholar 

  17. Janakiraman S, Bhat KU. Formation of composite surface during friction surfacing of steel with aluminium. Adv. Tribol. 2012;2012:1–5.

    Article  Google Scholar 

  18. Zhu J, Jiang W, Li G, Guan F, Yu Y, Fan Z. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J Mater Process Technol. 2020;283:116699.

    Article  CAS  Google Scholar 

  19. Jiang W, Zhu J, Li G, Guan F, Yu Y, Fan Z. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting. J Mater Sci Technol. 2021;88:119–31.

    Article  CAS  Google Scholar 

  20. Alaneme KK, Okotete EA, Fajemisin AV, Bodunrin MO. Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: a review. Arab J Basic Appl Sci. 2019;26(1):311–30.

    Article  Google Scholar 

  21. Kumar VM, Devi CN. Evaluation of mechanical characteristics for Aluminum-copper Metal matrix composite. Res J Eng Sci. 2014;2278:9472.

    Google Scholar 

  22. Carrara A, Kakitani R, Garcia A, Cheung N. Effect of cooling rate on microstructure and microhardness of hypereutectic Al–Ni alloy. Arch Civ Mech Eng. 2021;21(1):1–9.

    Article  Google Scholar 

  23. Arul S. Effect of nickel reinforcement on micro hardness and wear resistance of aluminium alloy Al7075. Mater Today: Proc. 2020;24:1042–51.

    Google Scholar 

  24. Abuthakir J, Subramanian R, Kavitha M, Venkatesh G, Manikandan P. Corrosion studies of Alx-Ni insitu intermetallics reinforced Al metal matrix composites. Mater Today: Proc. 2020;28:1158–63.

    CAS  Google Scholar 

  25. Vishwanatha A, Panda B, Shivanna D. Effect of a T6 aging treatment on the corrosion behaviour of in-situ AlxNiy reinforced AA6061 composite. Mater. Today: Proc. 2021;44(6):4112–4117.

    CAS  Google Scholar 

  26. Liu F, Zhu X, Ji S. Effects of Ni on the microstructure, hot tear and mechanical properties of Al–Zn–Mg–Cu alloys under as-cast condition. J Alloys Compd. 2020;821:153458.

    Article  CAS  Google Scholar 

  27. Ramesh R, Suresh Kumar S, Gowrishankar S. Production and characterization of aluminium metal matrix composite reinforced with Al3Ni by stir and squeeze casting. Appl. Mech. Mater. 2015;766:315–319

    Article  Google Scholar 

  28. Wang S, Starink M. Two types of S phase precipitates in Al–Cu–Mg alloys. Acta Mater. 2007;55(3):933–41.

    Article  ADS  CAS  Google Scholar 

  29. Dey GK. Physical metallurgy of nickel aluminides. Sadhana. 2003;28(1):247–62.

    Article  CAS  Google Scholar 

  30. Farajollahi R, Jamshidi AH, Jamaati R. Effects of Ni on the microstructure, mechanical and tribological properties of AA2024-Al3NiCu composite fabricated by stir casting process. J Alloys Compd. 2021;887:161433.

    Article  CAS  Google Scholar 

  31. Alizadeh R, Mahmudi R. Evaluating high-temperature mechanical behavior of cast Mg–4Zn–xSb magnesium alloys by shear punch testing. Mater Sci Eng A. 2010;527(16–17):3975–83.

    Article  Google Scholar 

  32. Bararpour SM, Aval HJ, Jamaati R. Effect of non-isothermal aging on microstructure and mechanical properties of friction surfaced AA5083-15wt% Zn composites. Surf Coat. 2020;384:125307.

    Article  CAS  Google Scholar 

  33. Rahmati Z, Jamshidi AH, Nourouzi S, Jamaati R. Effects of pre-heat treatment of the consumable rod on the microstructural and mechanical properties of the friction surfaced Al-Cu-Mg alloy over pure aluminum. Surf Coat. 2021;410:126954.

    Article  CAS  Google Scholar 

  34. Hanke S, dos Santos JF. Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing. J Mater Process Technol. 2017;247:257–67.

    Article  CAS  Google Scholar 

  35. Rahmati Z, Aval HJ, Nourouzi S, Jamaati R. Effect of friction surfacing parameters on microstructure and mechanical properties of solid-solutionized AA2024 aluminium alloy cladded on AA1050. Mater. Chem. Phys. 2021;269:124756.

    Article  CAS  Google Scholar 

  36. Silvério S, Krohn H, Fitseva V, Alcântara NG, Santos JF. Deposition of AA5083-H112 over AA2024-T3 by friction surfacing. Soldag Insp. 2018;23:225–34.

    Article  Google Scholar 

  37. Vilaça P, Gandra J, Vidal C. Linear friction based processing technologies for aluminum alloys: surfacing, stir welding and stir channeling. In: Ahmad Z, editor. Aluminium alloys - new trends in fabrication and applications. InTech Rijeka; 2012;159–197.

  38. Yu M, Zhao H, Zhang Z, Zhou L, Song X, Ma N. Texture evolution and corrosion behavior of the AA6061 coating deposited by friction surfacing. J Mater Process Technol. 2021;291:117005.

    Article  CAS  Google Scholar 

  39. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2rd ed. Elsevier; 2012.

  40. Rahmati Z, Aval HJ, Nourouzi S, Jamaati R. Modeling and experimental study of friction surfacing of AA2024 alloy over AA1050 plates. Mater Res Express. 2019;6(8):0865g2.

    Article  CAS  Google Scholar 

  41. Galvis JC, Oliveira PHF, Hupalo MF, Martins JP, Carvalho ALM. Influence of friction surfacing process parameters to deposit AA6351-T6 over AA5052-H32 using conventional milling machine. J Mater Process Technol. 2017;245:91–105.

    Article  CAS  Google Scholar 

  42. Imam M, Sun Y, Fujii H, Ninshu M, Tsutsumi S, Ahmed S, et al. Deformation characteristics and microstructural evolution in friction stir welding of thick 5083 aluminum alloy. Int J Adv Manuf Syst. 2018;99(1):663–81.

    Article  Google Scholar 

  43. Bararpour SM, Jamshidi Aval H, Jamaati R. Modeling and experimental investigation on friction surfacing of aluminum alloys. J Alloys Compd. 2019;805:57–68.

    Article  CAS  Google Scholar 

  44. Lee I, Hsu C, Chen C, Ho N, Kao P. Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Compos Sci Technol. 2011;71(5):693–8.

    Article  CAS  Google Scholar 

  45. Rahmati Z, Aval HJ, Nourouzi S, Jamaati R. Microstructural, tribological, and texture analysis of friction surfaced Al-Mg-Cu clad on AA1050 alloy. Surf Coat. 2020;397:125980.

    Article  CAS  Google Scholar 

  46. Kim JT, Soprunyuk V, Chawake N, Zheng YH, Spieckermann F, Hong SH, et al. Outstanding strengthening behavior and dynamic mechanical properties of in-situ Al–Al3Ni composites by Cu addition. Compos B Eng. 2020;189:107891.

    Article  CAS  Google Scholar 

  47. Li G, Jiang W, Guan F, Zhu J, Zhang Z, Fan Z. Microstructure, mechanical properties and corrosion resistance of A356 aluminum/AZ91D magnesium bimetal prepared by a compound casting combined with a novel Ni-Cu composite interlayer. J Mater Process Technol. 2021;288:116874.

    Article  CAS  Google Scholar 

  48. Dumitraschkewitz P, Gerstl SS, Stephenson LT, Uggowitzer PJ, Pogatscher S. Clustering in age-hardenable aluminum alloys. Adv Eng Mater. 2018;20(10):1800255.

    Article  Google Scholar 

  49. Archard J. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981–8.

    Article  ADS  Google Scholar 

  50. Jones DRH, May GJ. The thermal stability of the Al-Al3Ni eutectic in a temperature gradient. Acta Metall. 1975;23(1):29–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Jamshidi Aval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajollahi, R., Jamshidi Aval, H. & Jamaati, R. Effect of friction surfacing parameters on the microstructural, mechanical properties, and wear characteristic of Al-Cu-Mg alloy coating reinforced by nickel aluminide. Archiv.Civ.Mech.Eng 22, 75 (2022). https://doi.org/10.1007/s43452-022-00383-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00383-y

Keywords

Navigation