Skip to main content
Log in

A successive approximation method for thermo-elasto-plastic analysis of a reinforced functionally graded rotating disc

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Thermo-elasto-plastic analysis of a rotating disc made of Functionally Graded Materials (FGMs) is studied in this paper using Successive Approximation Method (SAM). The plane stress condition is assumed for formulation of the problem. After computation of effective material properties based on modified mixture rule, the governing equations are derived analytically and then is solved using the Differential Quadratic Method (DQM). After obtaining the displacements and stresses, the yield conditions are calculated by von-Mises failure criteria. The rotating disc is made of an Aluminum–Silicon Carbide functionally graded material. The plastic behavior of Aluminum is considered as strain hardening one. The effects of angular speed, percentage of ceramic particles, particle reinforcement power, and boundary conditions such as temperature gradient on the radial and tangential thermo-elasto-plastic strains, stresses, and equivalent stresses is investigated. The results show that the radial stresses through the disc are significantly less than tangential stresses, therefor the tangential stresses has a significant effect on the equivalent stress and yield conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\({C}_{ij}\) :

Weighting coefficient of n − th order derivative of an arbitrary function

\(E\) :

Young's Modulus

\(f\) :

Fraction of a material's phase

\(H\) :

Plastic modulus

\(k\) :

Thermal conductivity coefficient

\(n\) :

Power of ceramic particles distribution

\(p\) :

Applied load

\(q\) :

Stress to strain transfer ratio

\(T\) :

Temperature

\(u\) :

Displacement

\(r\) :

Radius

\(\alpha\) :

Thermal expansion coefficient

\(\varepsilon\) :

Strain

\(\theta\) :

Arbitrary angle

\(\nu\) :

Poisson's ratio

\(\rho\) :

Density

\(\sigma\) :

Stress

\(\omega\) :

Rotational velocity

\(1\) :

First phase

\(2\) :

Second phase

\(c\) :

Ceramic phase

\(co\) :

Ceramic phase at outer side

\(cr\) :

Critical

\(e\) :

Equal

\(i\) :

Inner side

\(m\) :

Metal phase

\(o\) :

Outer side

\(r\) :

Radial direction

\(von\) :

Von misses

\(y\) :

Yield

\(z\) :

Axial direction

\(\theta\) :

Tangential direction

\(i\) :

Number of step

\(m\) :

Metal phase

\(p\) :

Plastic regime

SAM:

Successive approximation method

FGM:

Functionally graded material

DQM:

Differential quadratic method

VMP:

Variable material property

References

  1. Temesgen A, Singh SB, Thakur P Classical and nonclassical treatment of problems in elastic-plastic and creep deformation for rotating discs. In: Materials Physics and Chemistry, pp. 1–70. Apple Academic Press, 2020.

  2. EkhteraeiToussi, Hamid, Farimani MR (2012) Elasto-plastic deformation analysis of rotating disc beyond its limit speed. In: International Journal of Pressure Vessels and Piping 89: 170–177. https://doi.org/10.1016/j.ijpvp.2011.11.001

  3. Altan G, Topçu M. Thermo-elastic stress of a metal-matrix composite disc under linearly-increasing temperature loading by analytical and FEM analysis. Adv Eng Softw. 2010;41(4):604–10. https://doi.org/10.1016/j.advengsoft.2009.11.007.

    Article  Google Scholar 

  4. You LH, Zhang JJ. Elastic-plastic stresses in a rotating solid disk. Int J Mech Sci. 1999;41(3):269–82. https://doi.org/10.1016/S0020-7403(98)00049-6.

    Article  Google Scholar 

  5. Lu Z, Zhao L, Ding H, Chen L. A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J Sound Vib. 2021;509:116251. https://doi.org/10.1016/j.jsv.2021.116251.

  6. Cheng Z, Liu Y, Jun Zhao Hu, Feng, and Yizhang Wu. Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling. Eng Fract Mech. 2018;191:13–32. https://doi.org/10.1016/j.engfracmech.2018.01.016.

    Article  Google Scholar 

  7. Nikbakht S, Kamarian S, Shakeri M. A review on optimization of composite structures Part II: functionally graded materials. Compos Struct. 2019;214:83–102. https://doi.org/10.1016/j.compstruct.2019.01.105.

    Article  Google Scholar 

  8. Bayat M, Sahari BB, Saleem M, Hamouda AMS, Reddy J. N Thermo elastic analysis of functionally graded rotating disks with temperature-dependent material properties: uniform and variable thickness. Int J Mech Materials Design. 2009;5(3):263–79. https://doi.org/10.1007/s10999-009-9100-z.

    Article  Google Scholar 

  9. Nejad MZ, Rastgoo A, Hadi A. Exact elasto-plastic analysis of rotating disks made of functionally graded materials. Int J Eng Sci. 2014;85:47–57. https://doi.org/10.1016/j.ijengsci.2014.07.009.

    Article  MathSciNet  Google Scholar 

  10. Khorsand M, Tang Y. Design functionally graded rotating disks under thermoelastic loads: weight optimization. Int J Press Vessels Pip. 2018;161:33–40. https://doi.org/10.1016/j.ijpvp.2018.02.002.

    Article  Google Scholar 

  11. Jahed H, Dubey RN. An axisymmetric method of elastic-plastic analysis capable of predicting residual stress field. J Pressure Vessel Technol. 1997;119(3):264–73. https://doi.org/10.1115/1.2842303.

    Article  Google Scholar 

  12. Jahed H, Sethuraman R, Dubey RN. A variable material property approach for solving elastic-plastic problems. Int J Press Vessels Pip. 1997;71(3):285–91. https://doi.org/10.1016/S0308-0161(96)00079-8.

    Article  Google Scholar 

  13. Mahdavi E, Akbari Alashti R, Cheloee Darabi A, Alizadeh M (2013) Linear thermoplastic analysis of FGM rotating discs with variable thickness. Iranian J Mech Eng Trans ISME 14(2: 73–87.

  14. Xu X, Karami B, Shahsavari D (2021) Time-dependent behavior of porous curved nanobeam. Int J Eng Sci 160. https://doi.org/10.1016/j.ijengsci.2021.103455

  15. Mousavi AA, Zhang C, Masri SF, Gholipour G (2021) Structural damage detection method based on the complete ensemble empirical mode decomposition with adaptive noise: a model steel truss bridge case study. Struct Health Monitoring 84049609. doi: https://doi.org/10.1177/14759217211013535.

  16. Zhao X, Zhu WD, Li YH. Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green’s functions. J Sound Vib. 2020;481: 115407. https://doi.org/10.1016/j.jsv.2020.115407.

    Article  Google Scholar 

  17. Zhang B, Chen Y, Wang Z, Li J, Ji H. Influence of mach number of main flow on film cooling characteristics under supersonic condition. Symmetry (Basel). 2021;13(127):127. https://doi.org/10.3390/sym13010127.

    Article  ADS  CAS  Google Scholar 

  18. Liu C, Gao X, Chi D, He Y, Liang M, Wang H. On-line chatter detection in milling using fast kurtogram and frequency band power. Euro J Mech A Solids. 2021;90: 104341. https://doi.org/10.1016/j.euromechsol.2021.104341.

    Article  ADS  Google Scholar 

  19. Zheng Y, Bahaloo H, Mousanezhad D, Mahdi E, Vaziri A, Nayeb-Hashemi H. Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity. Int J Mech Sci. 2016;119:283–93. https://doi.org/10.1016/j.ijmecsci.2016.10.018.

    Article  Google Scholar 

  20. Yildirim V (2019) Thermomechanical characteristics of a functionally graded mounted uniform disc with/without rigid casing. J Aerospace Technol Manag 11. https://doi.org/10.5028/jatm.v11.1008

  21. Sharma S, Yadav S. Numerical solution of thermal elastic-plastic functionally graded thin rotating disk with exponentially variable thickness and variable density. Therm Sci. 2019;23(1):125–36. https://doi.org/10.2298/TSCI131001136S.

    Article  Google Scholar 

  22. Nayak P, Bhowmick S, Saha KN. Elasto-plastic analysis of thermo-mechanically loaded functionally graded disks by an iterative variational method. Eng Sci Technol Int J. 2020;23(1):42–64. https://doi.org/10.1016/j.jestch.2019.04.007.

    Article  Google Scholar 

  23. Xu J, Wu Z, Chen H, Shao L, Zhou X, Wang S (2021) Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology. KSCE J Civ Eng, 13 pages. https://doi.org/10.1007/s12205-021-2034-1

  24. Deng H, Chen Y, Jia Y, Pang Y, Zhang T, Wang S, Yin L. Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding. J Manuf Process. 2021;64:379–91. https://doi.org/10.1016/j.jmapro.2021.01.024.

    Article  Google Scholar 

  25. Xie J, Chen Y, Yin L, Zhang T, Wang S, Wang L. Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating. J Manuf Process. 2021;64:473–80. https://doi.org/10.1016/j.jmapro.2021.02.009.

    Article  Google Scholar 

  26. Nejad MZ, Alamzadeh N, Hadi A. Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition. Compos B. 2018;154:410–22. https://doi.org/10.1016/j.compositesb.2018.09.022.

    Article  CAS  Google Scholar 

  27. Fan P, Deng R, Qiu J, Zhao Z, Wu S. Well logging curve reconstruction based on kernel ridge regression. Arab J Geosci. 2021;14:1559. https://doi.org/10.1007/s12517-021-07792-y.

    Article  Google Scholar 

  28. Li T, Dai Z, Yu M, Zhang W. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths. Eng Appl Comput Fluid Mech. 2021;15(1):549–60. https://doi.org/10.1080/19942060.2021.1895321.

    Article  Google Scholar 

  29. Fan Z, Ji P, Zhang J, Segets D, Chen D, Chen S. Wavelet neural network modeling for the retention efficiency of sub-15 nm nanoparticles in ultrafiltration under small particle to pore diameter ratio. J Membr Sci. 2021;635: 119503. https://doi.org/10.1016/j.memsci.2021.119503.

    Article  CAS  Google Scholar 

  30. Li X, Yang H, Zhang J, Qian G, Yu H, Cai J. Time-Domain Analysis of Tamper Displacement during Dynamic Compaction Based on Automatic Control. Coatings, 2021;11(9). https://doi.org/10.3390/coatings11091092.

  31. Wang D, Ju Y, Shen H, Xu L. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Constr Build Mater. 2019;197:464–73. https://doi.org/10.1016/j.conbuildmat.2018.11.181.

    Article  CAS  Google Scholar 

  32. Yang Z, Tam M, Zhang Y, Kitipornchai S, Lv J, Yang J. Nonlinear dynamic response of FG graphene platelets reinforced composite beam with edge cracks in thermal environment. Int J Struct Stab Dyn. 2020;20(14):2043005. https://doi.org/10.1142/S0219455420430051.

    Article  MathSciNet  Google Scholar 

  33. Yang Z, Feng C, Jie Yang Yu, Wang JL, Liu A, Jiyang Fu. Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints. Aerosp Sci Technol. 2020;107: 106326. https://doi.org/10.1016/j.ast.2020.106326.

    Article  Google Scholar 

  34. Shiping Zhang, Ronald YS, Pak Junhui Zhang. Three-dimensional frequency-domain Green's functions of a finite fluid-saturated soil layer underlain by rigid bedrock to interior loadings. Int J Geomech. 2021. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002235.

  35. Yang Z, Di Wu, Yang J, Lai S-K, Lv J, Liu A, Jiyang Fu. Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin-Walled Structures. 2021;166: 108103. https://doi.org/10.1016/j.tws.2021.108103.

    Article  Google Scholar 

  36. Huang X, Yang J, Yang Z. Thermo-elastic analysis of functionally graded graphene nanoplatelets (GPLs) reinforced closed cylindrical shells. Appl Math Model. 2021;97:754–70. https://doi.org/10.1016/j.apm.2021.04.027.

    Article  MathSciNet  Google Scholar 

  37. Arefi M. Elastic solution of a curved beam made of functionally graded materials with different cross sections. Steel Compos Struct. 2015;18(3):659–72.

    Article  MathSciNet  Google Scholar 

  38. Yang Z, Zhao S, Yang J, Lv J, Liu A, Fu J (2020) In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements. Mech Adv Materials Struct: 1–11. https://doi.org/10.1080/15376494.2020.1716420

  39. Yang Z, Liu A, Yang J, Lai S-K, Lv J, Jiyang Fu. Analytical prediction for nonlinear buckling of elastically supported FG-GPLRC arches under a central point load. Materials. 2021;14(8):2026. https://doi.org/10.3390/ma14082026.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mendelson A. Plasticity: theory and application. New York: Macmillan; 1968.

    Google Scholar 

  41. Luo Z, Li X, Shang J, Zhu H, Fang D. Modified rule of mixtures and Halpin-Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrication. Adv Mech Eng. 2018;10(7):1687814018785286.

    Article  Google Scholar 

  42. Hine P, Parveen B, Brands D, Caton-Rose F. Validation of the modified rule of mixtures using a combination of fibre orientation and fibre length measurements. Compos A Appl Sci Manuf. 2014;64:70–8. https://doi.org/10.1016/j.compositesa.2014.04.017.

    Article  CAS  Google Scholar 

  43. Suresh S, Mortensen A. Functionally graded metals and metal-ceramic composites: part 2 Thermomechanical behaviour. Int Mater Rev. 1997;42(3):85–116. https://doi.org/10.1179/imr.1997.42.3.85.

    Article  CAS  Google Scholar 

  44. Bhattacharyya M, Kapuria S, Kumar AN. On the stress to strain transfer ratio and elastic deflection behavior for Al/SiC functionally graded material. Mech Adv Mater Struct. 2007;14(4):295–302. https://doi.org/10.1080/1537649060081791.

    Article  CAS  Google Scholar 

  45. Madan R, Bhowmick S, Saha K. A study based on stress-strain transfer ratio calculation using Halpin-Tsai and MROM material model for limit elastic analysis of metal matrix FG rotating disk. FME Transactions. 2020;48(1):204–10.

    Article  Google Scholar 

  46. Vaghefi R. Thermo-elastoplastic analysis of functionally graded sandwich plates using a three-dimensional meshless model. Compos Struct. 2020;242: 112144. https://doi.org/10.1016/j.compstruct.2020.112144.

    Article  Google Scholar 

  47. Saeedi S, Kholdi M, Loghman A, Ashrafi H, Arefi M. Thermo-elasto-plastic analysis of thick-walled cylinder made of functionally graded materials using successive approximation method. Int J Press Vessels Pip. 2021;194: 104481. https://doi.org/10.1016/j.ijpvp.2021.104481.

    Article  CAS  Google Scholar 

  48. Cho JR, Tinsley Oden J (2000) Functionally graded material: a parametric study on thermal-stress characteristics using the Crank–Nicolson–Galerkin scheme. Comput Methods Appl Mech Eng 188(1–3): 17–38. https://doi.org/10.1016/S0045-7825(99)00289-3

  49. Chakrabarty J Theory of plasticity. Elsevier, 2012.

  50. Zhong W, Gao F, Ren Y Generalized differential quadrature method for free vibration analysis of a rotating composite thin-walled shaft. Math Prob Eng 2019 (2019). https://doi.org/10.1155/2019/1538329

  51. Zhong W, Gao F, Ren Y Generalized differential quadrature method for free vibration analysis of a rotating composite thin-walled shaft. Math Prob Eng 2019 (2019).

  52. Arshid E, Amir S, Loghman A. Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp Sci Technol. 2021;111: 106561. https://doi.org/10.1016/j.ast.2021.106561.

    Article  Google Scholar 

  53. Singhal P, Bindal G. Generalised differential quadrature method in the study of free vibration analysis of monoclinic rectangular plates. Am J Comput Appl Math. 2012;2(4):166–73. https://doi.org/10.5923/j.ajcam.20120204.05.

    Article  Google Scholar 

  54. Malik M, Civan F. A comparative study of differential quadrature and cubature methods vis-à-vis some conventional techniques in context of convection-diffusion-reaction problems. Chem Eng Sci. 1995;50(3):531–47. https://doi.org/10.1016/0009-2509(94)00223-E.

    Article  CAS  Google Scholar 

  55. Golchi, Majid, Mostafa Talebitooti, and Roohollah Talebitooti. "Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method." Mechanics Based Design of Structures and Machines (2019). https://doi.org/10.1080/15397734.2018.1545588

  56. Arshid E, Khorshidvand AR. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct. 2018;125:220–33.

    Article  Google Scholar 

  57. Kalali AT, Hassani B, Hadidi-Moud S. Elastic-plastic analysis of pressure vessels and rotating disks made of functionally graded materials using the isogeometric approach. J Theor Appl Mech. 2016;54(1):113–25.

    Article  Google Scholar 

  58. Kalali AT, Hadidi-Moud S. A semi-analytical approach to elastic-plastic stress analysis of FGM pressure vessels. J Solid Mech. 2013;5(1):63–73.

    Google Scholar 

  59. Ye R, Liu P, Shi K, Yan B. State damping control: a novel simple method of rotor UAV with high performance. IEEE access. 2020;8:214346–57. https://doi.org/10.1109/ACCESS.2020.3040779.

    Article  Google Scholar 

  60. Du Y, Pan N, Xu Z, Deng F, Shen Y, Kang H. Pavement distress detection and classification based on YOLO network. The international journal of pavement engineering, 2021;1–14 https://doi.org/10.1080/10298436.2020.1714047.

  61. Zhong Q, Yang J, Shi K, Zhong S, Zhixiong L, Angel SM. Event-Triggered H∞ Load Frequency Control for Multi-Area Nonlinear Power Systems Based on Non-Fragile Proportional Integral Control Strategy. IEEE Trans Intel Transp Syst. 2021. https://doi.org/10.1109/TITS.2021.3110759.

  62. Mou B, Bai Y. Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone. Engineering Structures. 2018;168:487–504. https://doi.org/10.1016/j.engstruct.2018.04.029.

Download references

Funding

This study was funded by X (4005278/024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholdi, M., Saeedi, S., Zargar Moradi, S.A. et al. A successive approximation method for thermo-elasto-plastic analysis of a reinforced functionally graded rotating disc. Archiv.Civ.Mech.Eng 22, 2 (2022). https://doi.org/10.1007/s43452-021-00321-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00321-4

Keywords

Navigation