Skip to main content
Log in

Bond behavior of steel fiber-reinforced mortar (SFRM) applied onto masonry substrate

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Masonry was the most used material during the last centuries to build constructions. Most of the existing masonry structures (buildings, bridges, etc.) were built without considering some important structural considerations that are important nowadays. Moreover, due to factors such as the increasing of service loads, materials aging, structural damage, etc., the existing masonry structures require strengthening interventions. The definition of optimal strengthening strategies using traditional and innovative materials is still an important issue of the scientific research. In fact, during the last decade, many researchers focused their attention studying innovative composites materials, such as fiber-reinforced polymers and fiber-reinforced cementitious matrix composites, for the strengthening of existing masonry structures. This research has focused on aspects such as the bond behavior between the substrate and the composite materials, the structural behavior of the strengthened masonry and concrete structures, and the compatibility and reversibility of these materials when bonded to existing substrates. In this study, the bond behavior of a composite material known as steel fiber-reinforced mortar (SFRM), recently used as for the strengthening of existing structures, applied onto masonry structures is analyzed experimentally and numerically. First, the material is characterized experimentally with the aim of getting insight on its behavior and applicability when applied as an innovative technique for the strengthening of masonry and to obtain mechanical parameters required for the numerical models. Mechanical properties of the SFRM studied included flexural and compressive strength, tensile strength, and residual flexural strength. The SFRM bond behavior on masonry substrates was evaluated by means of double shear lap tests. In addition, the experimental tensile and bond behavior of the SFRM is studied numerically through finite-element models validated using the results obtained during the experimental tests. Results show that if an adequate bonded length is provided, the SFRM can fully develop its tensile strength as detachment from the substrate is not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Gunes B, Cosgun T, Sayin B, Ceylan O. Structural rehabilitation of a middle byzantine ruin and the masonry building constructed above the ruin. Part II: the building. Eng Fail Anal. 2019;105:527–44. https://doi.org/10.1016/j.engfailanal.2019.06.096.

    Article  Google Scholar 

  2. Caporale A, Feo L, Luciano R. Limit analysis of FRP strengthened masonry arches via nonlinear and linear programming. Compos Part B. 2012;43(2):439–46. https://doi.org/10.1016/j.compositesb.2011.05.019.

    Article  Google Scholar 

  3. Capani F, D’Ambrisi A, De Stefano M, Focacci F, Luciano R, Nudo R, Penna R. Experimental investigation on cyclic response of RC elements repaired by CFRP external reinforcing systems. Compos Part B. 2017;112:290–9. https://doi.org/10.1016/j.compositesb.2016.12.053.

    Article  Google Scholar 

  4. Caporale A, Feo L, Luciano R, Penna R. Numerical collapse load of multi-span masonry arch structures with FRP reinforcement. Compos Part B. 2013;54:71–84. https://doi.org/10.1016/j.compositesb.2013.04.042.

    Article  Google Scholar 

  5. Carozzi FG, Poggi C, Bertolesi E, Milani G. Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: experimental evaluation. Compos Struct. 2018;187:466–80. https://doi.org/10.1016/j.compstruct.2017.12.075.

    Article  Google Scholar 

  6. Feo L, Luciano R, Misseri G, Rovero L. Irregular stone masonries: analysis and strengthening with glass fibre reinforced composites. Compos Part B. 2016;92:84–93. https://doi.org/10.1016/j.compositesb.2016.02.038.

    Article  Google Scholar 

  7. Alecci V, Focacci F, Rovero L, Stipo G, De Stefano M. Intrados strengthening of brick masonry arches with different FRCM composites: experimental and analytical investigations. Compos Struct. 2017;176:898–909. https://doi.org/10.1016/j.compstruct.2017.06.023.

    Article  Google Scholar 

  8. Alecci V, Misseri G, Rovero L, Stipo G, De Stefano M, Feo L, Luciano R. Experimental investigation on masonry arches strengthened with PBO-FRCM composite. Compos Part B. 2016;100:228–39. https://doi.org/10.1016/j.compositesb.2016.05.063.

    Article  Google Scholar 

  9. Greco F, Leonetti L, Luciano R, Trovalusci P. Multiscale failure analysis of periodic masonry structures with traditional and fiber-reinforced mortar joints. Compos Part B. 2017;118:75–95. https://doi.org/10.1016/j.compositesb.2017.03.004.

    Article  Google Scholar 

  10. Misseri G, Rovero L, Stipo G, Barducci S, Alecci V, De Stefano M. Experimental and analytical investigations on sustainable and innovative strengthening systems for masonry arches. Compos Struct. 2019;210:526–37. https://doi.org/10.1016/j.compstruct.2018.11.054.

    Article  Google Scholar 

  11. Cevallos OA, Olivito RS, Codispoti R, Ombres L. Flax and polyparaphenylene benzobisoxazole cementitious composites for the strengthening of masonry elements subjected to eccentric loading. Compos Part B. 2015;71:82–95. https://doi.org/10.1016/j.compositesb.2014.10.055.

    Article  Google Scholar 

  12. Oliveira DV, Basilio I, Lourenço PB. Experimental behavior of FRP strengthened masonry arches. J Compos Constr. 2010;14(3):312–22. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000086.

    Article  Google Scholar 

  13. Triantafillou TC, Papanicolaou CG. Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Mater Struct. 2006;39:93–103. https://doi.org/10.1007/s11527-005-9034-3.

    Article  Google Scholar 

  14. Garmendia L, San-José JT, García D, Larrinaga P. Rehabilitation of masonry arches with compatible advanced composite material. Constr Build Mater. 2011;25(12):4374–85. https://doi.org/10.1016/j.conbuildmat.2011.03.065.

    Article  Google Scholar 

  15. Zampieri P, Simoncello N, Tetougueni CD, Pellegrino C. A review of methods for strengthening of masonry arches with composite materials. Eng Struct. 2018;171:154–69. https://doi.org/10.1016/j.engstruct.2018.05.070.

    Article  Google Scholar 

  16. Tsonos ADG. A new method for earthquake strengthening of old R/C structures without the use of conventional reinforcement. Struct Eng Mech. 2014;52(2):391–403. https://doi.org/10.12989/sem.2014.52.2.391.

    Article  Google Scholar 

  17. Altun F, Haktanir T, Ari K. Effects of steel fiber addition on mechanical properties of concrete and RC beams. Constr Build Mater. 2007;21(3):654–61. https://doi.org/10.1016/j.conbuildmat.2005.12.006.

    Article  Google Scholar 

  18. Hassan AMT, Jones SW, Mahmud GH. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). Constr Build Mater. 2012;37:874–82. https://doi.org/10.1016/j.conbuildmat.2012.04.030.

    Article  Google Scholar 

  19. Ţibea C, Bompa DV. Ultimate shear response of ultra-high-performance steel fibre-reinforced concrete elements. Arch Civ Mech Eng. 2020;20:49. https://doi.org/10.1007/s43452-020-00051-z.

    Article  Google Scholar 

  20. Gholampour A, Hassanli R, Mills JE, Vincent T, Kunieda M. Experimental investigation of the performance of concrete columns strengthened with fiber reinforced concrete jacket. Constr Build Mater. 2019;194:51–61. https://doi.org/10.1016/j.conbuildmat.2018.10.236.

    Article  Google Scholar 

  21. Reggia A, Morbi A, Plizzari GA. Experimental study of a reinforced concrete bridge pier strengthened with HPFRC jacketing. Eng Struct. 2020;210:110355. https://doi.org/10.1016/j.engstruct.2020.110355.

    Article  Google Scholar 

  22. Facconi L, Minelli F, Lucchini S, Plizzari G. Experimental study of solid and hollow clay brick masonry walls retrofitted by steel fiber-reinforced mortar coating. J Earthq Eng. 2020;24(3):381–402. https://doi.org/10.1080/13632469.2018.1442264.

    Article  Google Scholar 

  23. Facconi L, Conforti A, Minelli F, Plizzari G. Improving shear strength of unreinforced masonry walls by nano-reinforced fibrous mortar coating. Mater Struct. 2015;48:2557–74. https://doi.org/10.1617/s11527-014-0337-0.

    Article  Google Scholar 

  24. Simoncello N, Zampieri P, Gonzalez-libreros J, Pellegrino C. Experimental behaviour of damaged masonry arches strengthened with steel fiber reinforced mortar (SFRM). Compos Part B. 2019;177:107386. https://doi.org/10.1016/j.compositesb.2019.107386.

    Article  Google Scholar 

  25. Sevil T, Baran M, Bilir T, Canbay E. Use of steel fiber reinforced mortar for seismic strengthening. Constr Build Mater. 2011;25(2):892–9. https://doi.org/10.1016/j.conbuildmat.2010.06.096.

    Article  Google Scholar 

  26. Zhang Y, Zhu P, Liao Z, Wang L. Interfacial bond properties between normal strength concrete substrate and ultra-high performance concrete as a repair material. Constr Build Mater. 2020;235:117431. https://doi.org/10.1016/j.conbuildmat.2019.117431.

    Article  Google Scholar 

  27. Abo Sabah SH, Zainal NL, Muhamad Bunnori N, Megat Johari MA, Hassan MH. Interfacial behavior between normal substrate and green ultra-high-performance fiber-reinforced concrete under elevated temperatures. Struct Concr. 2019;20:1896–908. https://doi.org/10.1002/suco.201900152.

    Article  Google Scholar 

  28. Zhanga Y, Zhanga C, Zhu Y, Cao J, Shao X. An experimental study: various influence factors affecting interfacial shear performance of UHPC-NSC. Constr Build Mater. 2020;236:117480. https://doi.org/10.1016/j.conbuildmat.2019.117480.

    Article  Google Scholar 

  29. UNI EN 998-2_2016. Specification for mortar for masonry—part 2: masonry mortar.

  30. UNI-EN 1015-11. Methods of test for mortar for masonry—determination of flexural and compressive strength of hardened mortar.

  31. UNI EN 13412:2007. Products and systems for the protection and repair of concrete structures—test methods—determination of modulus of elasticity in compression.

  32. BS EN 771-1:2011. Specification for masonry units—part 1: clay masonry units.

  33. BS EN 1052-1:1999. Methods of test for masonry—part 1: determination of compressive strength.

  34. EN 1996-1 1 2005;1. Eurocode6. Structures G rules for reinforced and unreinforced masonry.

  35. Thamboo J, Dhanasekar M. Correlation between the performance of solid masonry prisms and wallettes under compression. J Build Eng. 2019;22:429–38. https://doi.org/10.1016/j.jobe.2019.01.007.

    Article  Google Scholar 

  36. BS EN 14651:2005. Test method for metallic fibre concrete—measuring the flexural tensile strength (limit of proportionality (LOP), residual).

  37. CNR-DT 204/2006. Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture di Calcestruzzo Fibrorinforzato.

  38. Xu BW, Shi HS. Correlations among mechanical properties of steel fiber reinforced concrete. Constr Build Mater. 2009;23(12):3468–74. https://doi.org/10.1016/j.conbuildmat.2009.08.017.

    Article  Google Scholar 

  39. Yoo DY, Banthia N, Yoon YS. Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete. Cem Concr Compos. 2016;74:71–87. https://doi.org/10.1016/j.cemconcomp.2016.09.005.

    Article  Google Scholar 

  40. Mukhtar FM, Faysal RM. A review of test methods for studying the FRP-concrete interfacial bond behavior. Constr Build Mater. 2018;169:877–87. https://doi.org/10.1016/j.conbuildmat.2018.02.163.

    Article  Google Scholar 

  41. Hadigheh SA, Gravina RJ, Setunge S. Identification of the interfacial fracture mechanism in the FRP laminated substrates using a modified single lap shear test. Eng Fract Mech. 2015;134:317–29. https://doi.org/10.1016/j.engfracmech.2014.12.001.

    Article  Google Scholar 

  42. Falope FO, Lanzoni L, Tarantino AM. Double lap shear test on steel fabric reinforced cementitious matrix (SFRCM). Compos Struct. 2018;201:503–13. https://doi.org/10.1016/j.compstruct.2018.06.001.

    Article  Google Scholar 

  43. D’Antino T, Sneed LH, Carloni C, Pellegrino C. Effect of the inherent eccentricity in single-lap direct-shear tests of PBO FRCM-concrete joints. Compos Struct. 2016;142:117–29. https://doi.org/10.1016/j.compstruct.2016.01.076.

    Article  Google Scholar 

  44. Sneed LH, D’Antino T, Carloni C, Pellegrino C. A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests. Cem Concr Compos. 2015;64:37–48. https://doi.org/10.1016/j.cemconcomp.2015.07.007.

    Article  Google Scholar 

  45. Bertolesi E, Milani G, Fagone M, Rotunno T, Grande E. Micro-mechanical FE numerical model for masonry curved pillars reinforced with FRP strips subjected to single lap shear tests. Compos Struct. 2018;201:916–31. https://doi.org/10.1016/j.compstruct.2018.06.111.

    Article  Google Scholar 

  46. Rotunno T, Fagone M, Bertolesi E, Grande E, Milani G. Single lap shear tests of masonry curved pillars externally strengthened by CFRP strips. Compos Struct. 2018;200:434–48. https://doi.org/10.1016/j.compstruct.2018.05.097.

    Article  Google Scholar 

  47. de Carvalho Bello CD, Boem I, Cecchi A, Gattesco N, Oliveira DV. Experimental tests for the characterization of sisal fiber reinforced cementitious matrix for strengthening masonry structures. Constr Build Mater. 2019;219:44–55. https://doi.org/10.1016/j.conbuildmat.2019.05.168.

    Article  Google Scholar 

  48. Ombres L, Iorfida A, Mazzuca S, Verre S. Bond analysis of thermally conditioned FRCM-masonry joints. Measurement. 2018;125:509–15. https://doi.org/10.1016/j.measurement.2018.05.021.

    Article  Google Scholar 

  49. Franzoni E, Gentilini C, Santandrea M, Carloni C. Effects of rising damp and salt crystallization cycles in FRCM-masonry interfacial debonding: towards an accelerated laboratory test method. Constr Build Mater. 2018;175:225–38. https://doi.org/10.1016/j.conbuildmat.2018.04.164.

    Article  Google Scholar 

  50. Barbat GB, Cervera M, Chiumenti M, Espinoza E. Structural size effect: experimental, theoretical and accurate computational assessment. Eng Struct. 2020. https://doi.org/10.1016/j.engstruct.2020.110555.

    Article  Google Scholar 

  51. Popovics S. A numerical approach to the complete stress-strain curve of concrete. Cem Concr Res. 1973;3(5):583–99. https://doi.org/10.1016/0008-8846(73)90096-3.

    Article  Google Scholar 

  52. CNR-DT 200 R1/2013. Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l’utilizzo di Compositi Fibrorinforzati.

  53. Ghiassi B, Marcari G, Oliveira DV, Lourenço PB. Numerical analysis of bond behavior between masonry bricks and composite materials. Eng Struct. 2012;43:210–20. https://doi.org/10.1016/j.engstruct.2012.05.022.

    Article  Google Scholar 

  54. Vecchio FJ, Collins MP. Modified compression-field theory for reinforced concrete elements subjected to shear. J Am Concr Inst. 1986;83:219–31.

    Google Scholar 

Download references

Acknowledgements

Eng. P. Napolitano and Mr. L. Martin are gratefully acknowledged for providing the SFRM composite material.

Funding

This research was not supported by funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zampieri.

Ethics declarations

Conflict of interest

The authors declare that there is not conflict of interest.

Ethical approval

The authors approve the ethical aims of the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampieri, P., Simoncello, N., Gonzalez Libreros, J. et al. Bond behavior of steel fiber-reinforced mortar (SFRM) applied onto masonry substrate. Archiv.Civ.Mech.Eng 20, 92 (2020). https://doi.org/10.1007/s43452-020-00090-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00090-6

Keywords

Navigation