Skip to main content

Advertisement

Log in

Oral Effect of Tridax procumbens, Allium sativum, and (3S)-16,17-Didehydrofalcarinol in a Murine Model of Cutaneous Leishmaniasis

  • Original Article
  • Published:
Revista Brasileira de Farmacognosia Aims and scope Submit manuscript

Abstract

The oral effect of Tridax procumbens L., Asteraceae, methanolic extract and (3S)-16,17-didehydrofalcarinol (an oxylipin) alone or in combination with Allium sativum L., Amaryllidaceae, aqueous extract over the course of infection in BALB/c mice infected by Leishmania mexicana was evaluated. First, the effective dose of the extracts and the oxylipin in terms of reduction of the ulcer size was determined. Then, the effect of combinations of A. sativum with either T. procumbens or oxylipin over the lesion size, parasite load, and interferon gamma expression in situ was evaluated. The administration of 40 mg/kg/day of T. procumbens significantly reduced ulcer size (p = 0.0045) in comparison to the control group at the end of the administration. Treatment with oxylipin at doses of 40 and 80 mg/kg/day led to re-epithelization of the tissue in at least one mouse 2 weeks post-treatment. Treatment with A. sativum had no effect on lesion reduction at any doses. The combinations of Tridax-Allium and oxylipin-Allium tended to control parasite load at levels comparable to the treatment with glucantime. Animals treated with the oxylipin-Allium mix had fewer extracellular amastigotes and infected macrophages than the untreated mice. Treatment with T. procumbens induced the expression of interferon gamma in situ. Our results suggest the potential of the methanolic extract of T. procumbens and the oxylipin alone or in combination with A. sativum as alternative treatments of cutaneous leishmaniasis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadi-Renani K, Mahmoodzadeh A, Cheraghali AM, Esfahani AA (2002) Effect of garlic extract on cutaneous leishmaniasis and the role of nitric oxide. Iran J Med Sci 27:97–100

    Google Scholar 

  • Andrade-Narvaez FJ, Medina-Peralta S, Vargas-Gonzalez A, Canto-Lara SB, Estrada-Parra S (2005) The histopathology of cutaneous leishmaniasis due to Leishmania (Leishmania) mexicana in the Yucatan peninsula, Mexico. Rev Inst Med Trop 47:191–194. https://doi.org/10.1590/S0036-46652005000400003

    Article  Google Scholar 

  • Andrade-Narvaez FJ, Van Wynsberghe NR, Sosa-Bibiano EI, Loria-Cervera EN (2017) Eco-epidemiological and immunological features of localized cutaneous leishmaniasis in Southeastern Mexico: thirty years of study. In: Claborn D (ed) The epidemiology and ecology of leishmaniasis. IntechOpen, Rijeka, Criatia, pp. 137–152

  • De Barros VED, Saggioro FP, Neder L, De Oliveira França RF, Mariguela V, Chávez JH, Penharvel S, Forjaz J, Lopes da Fonseca BA, Figueiredo LTM (2011) An experimental model of meningoencephalomyelitis by Rocio flavivirus in Balb/c mice: inflammatory response, cytokine production, and histopathology. Am J Trop Med Hyg 85:363–373. https://doi.org/10.4269/ajtmh.2011.10-0246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foroutan-Rad M, Tappeh KH, Khademvatan S (2017) Antileishmanial and immunomodulatory activity of Allium sativum (garlic). A review. J Evid-Based Complement Altern Med 22:141–155. https://doi.org/10.1177/2156587215623126

    Article  CAS  Google Scholar 

  • Gamboa-Leon MR, Aranda-Gonzalez I, Mut-Martin M, Garcia-Miss MR, Dumonteil E (2007) In vivo and in vitro control of Leishmania mexicana due to garlic-induced NO production. Scand J Immunol 66:508–514. https://doi.org/10.1111/j.1365-3083.2007.02000.x

    Article  CAS  PubMed  Google Scholar 

  • Gamboa-Leon R, Vera-Ku M, Peraza-Sanchez SR, Ku-Chulim C, Horta-Baas A, Rosado-Vallado M (2014) Antileishmanial activity of a mixture of Tridax procumbens and Allium sativum in mice. Parasite 21:15. https://doi.org/10.1051/parasite/2014016

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingole VV, Mhaske PC, Katade SR (2021) Phytochemistry and pharmacological aspects of Tridax procumbens (L.): a systematic and comprehensive review. Phytomedicine Plus 100199. https://doi.org/10.1016/j.phyplu.2021.100199

  • Lago J, Silva JA, Borja L, Fraga DBM, Schriefer A, Arruda S, Lago E, Carvalho E, Bacellar O (2019) Clinical and histopathologic features of canine tegumentary leishmaniasis and the molecular characterization of Leishmania braziliensis in dogs. PLoS Neglect Trop D 13:e0007532. https://doi.org/10.1371/journal.pntd.0007532

    Article  CAS  Google Scholar 

  • Leary S, Underwood W, Anthony R, Cartner S, Corey D, Gran-Din T, Greenacre CB, Gwaltney-Bran S, McCrackin MA, Meyer R, Miller D, Shearer J, Yanong R (2013) AVMA guidelines for the euthanasia of animals, 2013th edn. American Veterinary Medical Association, Schaumburg (IL)

    Google Scholar 

  • Loría-Cervera EN, Sosa-Bibiano EI, Van Wynsberghe NR, Torres-Castro JR, Andrade-Narváez FJ (2019) Preliminary epidemiological findings of Leishmania infection in the municipality of Tinum, Yucatan State. Mexico Parasite Epidemiol Control 4:e00088. https://doi.org/10.1016/j.parepi.2019.e00088

    Article  PubMed  Google Scholar 

  • Martín-Quintal Z, Moo-Puc R, González-Salazar F, Chan-Bacab MJ, Torres-Tapia LW, Peraza-Sánchez SR (2009) In vitro activity of Tridax procumbens against promastigotes of Leishmania mexicana. J Ethnopharmacol 122:463–467. https://doi.org/10.1016/j.jep.2009.01.037

    Article  CAS  PubMed  Google Scholar 

  • Martin-Quintal Z, Garcia-Miss MR, Mut-Martin M, Matus-Moo A, Torres-Tapia LW, Peraza-Sanchez SR (2010) The leishmanicidal effect of (3S)-16,17 didehydrofalcarinol, an oxylipin isolated from Tridax procumbens, is independent of NO production. Phytother Res 24:1004–1008. https://doi.org/10.1002/ptr.3052

    Article  CAS  PubMed  Google Scholar 

  • Nicolas L, Prina E, Lang T, Milon G (2002) Real-time PCR for detection and quantification of Leishmania in mouse tissues. J Clin Microbiol 40:1666–1669. https://doi.org/10.1128/JCM.40.5.1666-1669.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira LF, Schubach AO, Martins MM, Passos SL, Oliveira RV, Marzochi MC, Andrade CA (2011) Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop 118:87–96. https://doi.org/10.1016/j.actatropica.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  • Oryan A (2015) Plant-derived compounds in treatment of leishmaniasis. Iran J Vet Res 16:1–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • PAHO (2021) Leishmaniasis: epidemiological report for the Americas. Pan American Health Organization, Washington, DC: World Health Organization. https://iris.paho.org/handle/10665.2/55368

  • Peraza-Sánchez SR, Cen-Pacheco F, Noh-Chimal A, May-Pat F, Simá-Polanco P, Dumonteil E, García-Miss MR, Mut-Martín M (2007) Leishmanicidal evaluation of extracts from native plants of the Yucatan peninsula. Fitoterapia 78:315–318. https://doi.org/10.1016/j.fitote.2007.03.013

    Article  PubMed  Google Scholar 

  • Tiwari U, Rastogi B, Singh P, Saraf DK, Vyas SP (2004) Immunomodulatory effects of aqueous extract of Tridax procumbens in experimental animals. J Ethnopharmacol 92:113–119. https://doi.org/10.1016/j.jep.2004.02.001

    Article  PubMed  Google Scholar 

  • Vargas-Gonzalez A, Canto-Lara SB, Damian-Centeno AG, Andrade-Narvaez FJ (1999) Cutaneous leishmaniasis (chiclero’s ulcer) response to treatment with meglumine antimoniate in Southeast Mexico. Am J Trop Med Hyg 61:960–963

    Article  CAS  Google Scholar 

  • Wabwoba BW, Anjili CO, Ngeiywa MM, Ngure PK, Kigondu EM, Ingonga J, Makwali J (2010) Experimental chemotherapy with Allium sativum (Liliaceae) methanolic extract in rodents infected with Leishmania major and Leishmania donovani. J Vector Dis 47:160–167

    Google Scholar 

Download references

Acknowledgements

Luis W. Torres-Tapia is acknowledged for his technical assistance in obtaining the T. procumbens and A. sativum extracts.

Funding

This work was supported by a grant from the National Council of Science and Technology, Mexico (PDCPN 2015/88).

Author information

Authors and Affiliations

Authors

Contributions

LFL contributed to the data collection, statistical analysis, and manuscript preparation. BMVK contributed to the study design and obtention of the extracts. MRGL contributed to the study design and obtaining the extracts. SRPS contributed to the study design, obtained funding, and managed the project. JLGC contributed to the collection and interpretation of histological data. KBLA supervised the experiments and contributed to the collection of data. EISB contributed to the study design and supervised the experiments with the animals. ENLC contributed to the study design, statistical analysis, and manuscript preparation. All of the authors read and approved the final manuscript.

Corresponding author

Correspondence to Elsy Nalleli Loría-Cervera.

Ethics declarations

Ethics Approval

The animals were handled according to the Mexican law for the use of laboratory animals, NOM-062-ZOO-1999, Secretariat of Agriculture and Rural Development (Secretaría de Agricultura y Desarrollo Rural). The protocol for the animal experiments was approved with the ID: CEI-003–2018 by the Ethics Research Committee of the Regional Research Center Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 185 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer-Lino, L., Vera-Ku, B.M., Gamboa-León, M.R. et al. Oral Effect of Tridax procumbens, Allium sativum, and (3S)-16,17-Didehydrofalcarinol in a Murine Model of Cutaneous Leishmaniasis. Rev. Bras. Farmacogn. 32, 805–811 (2022). https://doi.org/10.1007/s43450-022-00314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43450-022-00314-1

Keywords

Navigation