Skip to main content

Advertisement

Log in

Gut Microbiota and the Metabolism of Phytoestrogens

  • Review
  • Published:
Revista Brasileira de Farmacognosia Aims and scope Submit manuscript

Abstract

Gut microbiota have a variety of health and nutritional benefits in their host organisms. Their beneficial effects are related to gastrointestinal diseases, immunomodulation, intestinal microbial balance, and antimicrobial properties. However, their properties also involve an influence on the bioavailability of certain drugs and food components in the body. Phytoestrogens are nonsteroidal secondary metabolites with estrogenic activity. They are found in various foods, especially soy, and are used for the treatment of estrogen-associated diseases such as menopause, cardiovascular diseases, breast cancer, and osteoporosis. Some metabolites produced by gut microbiota from phytoestrogens have even stronger effects due to their higher lipophilicity, which leads to a better absorption and a higher affinity with estrogen receptors. The crucial metabolism of phytoestrogens takes place in the gastrointestinal tract where the gut microbiota are present. Probiotics are live microorganisms that can confer health benefits to the host when administered in adequate amounts. They are present in milk products and dietary supplements, and are capable of restoring the gut microbial communities when ingested. Most of the probiotics are bacteria and thus their intake can enhance the metabolism of phytoestrogens and, therefore, enhance their pharmacological effects. In this review, we summarize the influence of gut microbiota on the metabolism of phytoestrogens and their beneficial effects on the host.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available.

References

  • Adlercreutz H, Mazur W (1997) Phyto-oestrogens and western diseases. Ann Med 29:95–120

    CAS  PubMed  Google Scholar 

  • Amarowicz R, Pegg RB (2019) Natural antioxidants of plant origin. In: Ferreria I, Barros L (eds) Advances in food and nutrition research. Functional food ingredients from plants. Academic, Cambridge, pp 1–81. https://doi.org/10.1016/bs.afnr.2019.02.011

    Chapter  Google Scholar 

  • Athni TS, Athni SS (2019) The evolution of modern medicine: garden to pill box. In: Joshee N, Dhekney S, Parajuli P (eds) Medicinal Plants. Springer, Cham, pp 1–16. https://doi.org/10.1007/978-3-030-31269-5_1

    Chapter  Google Scholar 

  • Bacciottini L, Falchetti A, Pampaloni B, Bartolini E, Carossino AM, Brandi ML (2007) Phytoestrogens: food or drug? Clin Cases Miner Bone Metab 4:123–130

    PubMed  PubMed Central  Google Scholar 

  • Baker JM, Nakkash LA, Herbst-Kralovetz MM (2017) Estrogen–gut microbiome axis: physiological and clinical implications. Maturitas 103:45–53

    CAS  PubMed  Google Scholar 

  • Basu P, Maier C (2018) Phytoestrogens and breast cancer: in vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed Pharmacother 107:1648–1666. https://doi.org/10.1016/j.biopha.2018.08.100

  • Bilal I, Chowdhury A, Davidson J, Whitehead S (2014) Phytoestrogens and prevention of breast cancer: the contentious debate. World J Clin Oncol 5:705–712

    PubMed  PubMed Central  Google Scholar 

  • Bravo D, Peiroten A, Alvarez I, Landete JM (2017) Phytoestrogen metabolism by lactic acid bacteria: enterolignan production by Lactobacillus salivarius and Lactobacillus gasseri strains. J Funct Foods 37:373–378

    CAS  Google Scholar 

  • Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J (2010) Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92:141–153

    CAS  PubMed  Google Scholar 

  • Canny GO, McCormick BA (2008) Bacteria in the intestine, helpful residents or enemies from within? Infect Immun 76:3360–3373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerda B, Tomas-Barberan FA, Espin JC (2005) Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: identification of biomarkers and individual variability. J Agric Food Chem 53:227–235

    CAS  PubMed  Google Scholar 

  • Chen MN, Lin CC, Liu CF (2015) Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric 18:260–269

    CAS  PubMed  Google Scholar 

  • Clavel T, Dore J, Blaut M (2006a) Bioavailability of lignans in human subjects. Nutr Res Rev 19:187–196

    CAS  PubMed  Google Scholar 

  • Clavel T, Borrmann D, Braune A, Doré J, Blaut M (2006b) Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12:140–147

    CAS  PubMed  Google Scholar 

  • Creus-Cuadros A, Tresserra-Rimbau A, Quifer-Rada P, Martínez-González MA, Corella D, Salas-Salvadó J, Fitó M, Estruch R, Gómez-Gracia E, Lapetra J, Arós F, Fiol M, Ros E, Serra-Majem L, Pintó X, Moreno JJ, Ruiz-Canela M, Sorli JV, Basora J, Schröder H, Lamuela-Raventós RM, PREDIMED Study Investigators (2017) Associations between both lignan and yogurt consumption and cardiovascular risk parameters in an elderly population: observations from a cross-sectional approach in the PREDIMED study. J Acad Nutr Diet 117:609–622. https://doi.org/10.1016/j.jand.2016.11.003

    Article  PubMed  Google Scholar 

  • Desmawati D, Sulastri D (2019) Phytoestrogens and their health effect. Open Access Maced J Med Sci 7:495–499. https://doi.org/10.3889/oamjms.2019.086

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Cagno R, Mazzacane F, Rizello CG, Vincentini O, Silano M, Giuliano G, De Angelis M, Gobbetti M (2010) Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. J Agric Food Chem 58:10338–10346

    PubMed  Google Scholar 

  • Ding WK, Shah NP (2010) Enhancing the biotransformation of isoflavones in soymilk supplemented with lactose using probiotic bacteria during extended fermentation. J Food Sci 75:M140–M149

    CAS  PubMed  Google Scholar 

  • Donkor ON, Shah NP (2007) Production of β-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J Food Sci 73:M15–M20

    Google Scholar 

  • Eisenbrand G, Senate Commission on Food Safety of the German Research F (2007) Isoflavones as phytoestrogens in food supplements and dietary foods for special medical purposes. Opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG)-(shortened version). Mol Nutr Food Res 51:1305–1312

    Google Scholar 

  • Espin JC, Larrosa M, Garcia-Conesa MT, Tomas-Barberan F (2013) Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/270418

  • Frankenfeld CL (2016) Cardiometabolic risk and gut microbial phytoestrogen metabolite phenotypes. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201500900

  • Freeman EW, Sherif K (2007) Prevalence of hot flushes and night sweats around the world: a systematic review. Climacteric 10:197–214

    CAS  PubMed  Google Scholar 

  • Gaya P, Medina M, Sanchez-Jimenez A, Landete JM (2016a) Phytoestrogen metabolism by adult human gut microbiota. Molecules. https://doi.org/10.3390/molecules21081034

  • Gaya P, Peiroten A, Medina M, Landete JM (2016b) Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int J Food Sci Nutr 67:117–124

    CAS  PubMed  Google Scholar 

  • Gencel VB, Benjamin MM, Bahou SN, Khalil RA (2012) Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini-Rev Med Chem 12:149–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasaniani N, Rahimlou M, Ramezani Ahmadi A, Mehdizadeh Khalifani A, Alizadeh M (2019) The effect of flaxseed enriched yogurt on the glycemic status and cardiovascular risk factors in patients with type 2 diabetes mellitus: randomized, open-labeled, controlled study. Clin Nutr Res 8:284–295. https://doi.org/10.7762/cnr.2019.8.4.284

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, Nishibe S, Adlercreutz H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49:3178–3186

    CAS  PubMed  Google Scholar 

  • Hur HG, Lay JO, Beger RD, Freeman JP, Rafii F (2000) Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol 174:422–428

    CAS  PubMed  Google Scholar 

  • Iqbal MF, Zhu WY (2009) Characterization of newly isolated Lactobacillus delbrueckii-like strain MF-07 isolated from chicken and its role in isoflavone biotransformation. FEMS Microbiol Lett 291:180–187

    CAS  PubMed  Google Scholar 

  • Ismail T, Calcabrini C, Diaz AR, Fimognari C, Turrini E, Catanzaro E, Akhtar S, Sestili P (2016) Ellagitannins in cancer chemoprevention and therapy. Toxins. https://doi.org/10.3390/toxins8050151

  • Kilkkinen A, Pietinen P, Klaukka T, Virtamo J, Korhonen P, Adlercreutz H (2002) Use of oral antimicrobials decreases serum enterolactone concentration. Am J Epidemiol 155:472–477

    PubMed  Google Scholar 

  • Lambert MNT, Thybo CB, Lykkeboe S, Rasmussen LM, Frette X, Christensen LP, Jeppesen PB (2017) Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr 106:909–920

    CAS  PubMed  Google Scholar 

  • Lampe JW (2003) Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J Nutr 133(Suppl 3):956S–964S

    CAS  PubMed  Google Scholar 

  • Landete JM, Arques J, Medina M, Gaya P, de Las RB, Munoz R (2016) Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci 56:1826–1843

    CAS  Google Scholar 

  • Landete JM, Gaya P, Rodriguez E, Langa S, Peiroten A, Medina M, Arques JL (2017) Probiotic bacteria for healthier aging: immunomodulation and metabolism of phytoestrogens. Biomed Res. https://doi.org/10.1155/2017/5939818

  • Lye HS, Kuan CY, Ewe JA, Fung WY, Liong MT (2009) The improvement of hypertension by probiotics: effects on cholesterol, diabetes, renin, and phytoestrogens. Int J Mol Sci 10:3755–3775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz O, Fuentealba C, Ampuero D, Figuerola F, Estevez AM (2018) The effect of Lactobacillus acidophilus and Lactobacillus casei on the in vitro bioaccessibility of flaxseed lignans (Linum usitatissimum L.). Food Funct 9:2426–2432. https://doi.org/10.1039/c8fo00390d

  • Nakatsu CH, Armstrong A, Clavijo AP, Martin BR, Barnes S, Weaver CM (2014) Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption. PLoS One. https://doi.org/10.1371/journal.pone.0108924

  • Otieno DO, Ashton JF, Shah NP (2006) Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res Int 39:394–407

    CAS  Google Scholar 

  • Parikh M, Maddaford TG, Austria JA, Aliani M, Netticadan T, Pierce GN (2019) Dietary flaxseed as a strategy for improving human health. Nutrients. https://doi.org/10.3390/nu11051171

  • Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31:400–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 21:204–207

    CAS  PubMed  Google Scholar 

  • Peirotén A, Gaya P, Alvarez I, Bravo D, Landete JM (2019a) Influence of different lignan compounds on enterolignan production by Bifidobacterium and Lactobacillus strains. Int J Food Microbiol 289:17–23. https://doi.org/10.1016/j.ijfoodmicro.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  • Peirotén A, Bravo D, Landete JM (2019b) Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1622505

  • Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2012.00086

  • Piwowarski JP, Granica S, Stefanska J, Kisst AK (2016) Differences in metabolism of ellagitannins by human gut microbiota ex vivo cultures. J Nat Prod 79:3022–3030

    CAS  PubMed  Google Scholar 

  • Puupponen-Pimia R, Seppanen-Laakso T, Kankainen M, Maukonen J, Torronen R, Kolehmainen M, Leppanen T, Moilanen E, Nohynek L, Aura AM, Poutanen K, Tomas-Barberan FA, Espin JC, Oksman-Caldentey KM (2013) Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol Nutr Food Res 57:2258–2263

    PubMed  Google Scholar 

  • Rietjens I, Louisse J, Beekmann K (2017) The potential health effects of dietary phytoestrogens. Br J Pharmacol 174:1263–1280

    CAS  PubMed  Google Scholar 

  • Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ (2019) Naturally lignan-rich foods: a dietary tool for health promotion? Molecules. https://doi.org/10.3390/molecules24050917

  • Selma MV, Beltran D, Garcia-Villalba R, Espin JC, Tomas-Barberan FA (2014) Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 5:1779–1784

    CAS  PubMed  Google Scholar 

  • Selma MV, Beltran D, Luna MC, Romo-Vaquero M, Garcia-Villalba R, Mira A, Espin JC, Tomas-Barberan FA (2017) Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01521

  • Setchell KD, Lydeking-Olsen E (2003) Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr 78:593S–609S

    CAS  PubMed  Google Scholar 

  • Steinberg FM, Guthrie NL, Villablanca AC, Kumar K, Murray MJ (2003) Soy protein with isoflavones has favorable effects on endothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women. Am J Clin Nutr 78:123–130

    CAS  PubMed  Google Scholar 

  • Sun Q, Wedick NM, Pan A, Townsend MK, Cassidy A, Franke AA, Rimm EB, Hu FB, van Dam RM (2014) Gut microbiota metabolites of dietary lignans and risk of type 2 diabetes: a prospective investigation in two cohorts of U.S. women. Diabetes Care 37:1287–1295

    PubMed  PubMed Central  Google Scholar 

  • Talaei M, Pan A (2015) Role of phytoestrogens in prevention and management of type 2 diabetes. World J Diabetes 6:271–283

    PubMed  PubMed Central  Google Scholar 

  • Tamura M, Hori S, Nakagawa H (2011) Lactobacillus rhamnosus JCM 2771: impact on metabolism of isoflavonoids in the fecal flora from a male equol producer. Curr Microbiol 62:1632–1637

    CAS  PubMed  Google Scholar 

  • Tham DM, Gardner CD, Haskell WL (1998) Clinical review 97: potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 83:2223–2235

    CAS  PubMed  Google Scholar 

  • Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchihashi R, Sakamoto S, Kodera M, Nohara T, Kinjo J (2008) Microbial metabolism of soy isoflavones by human intestinal bacterial strains. J Nat Med Tokyo 62:456–460

    CAS  Google Scholar 

  • Uchiyama S, Ueno T, Suzuki T (2007) Identification of a newly isolated equol-producing lactic acid bacterium from the human feces. J Intest Microbiol 21:217–220

    Google Scholar 

  • Yoder SC, Lancaster SM, Hullar MAJ, Lampe JW (2015) Gut microbial metabolism of plant lignans: influence on human health. In: Tuohy K, Rio DD (eds) Diet-microbe interactions in the gut effects on human health and disease. Academic, Cambridge, pp 103–117

    Google Scholar 

  • Zhang S, Maghout TA, Cao H, Pelzl L, Salker MS, Veldhoen M, Cheng A, Lang F, Singh Y (2019) Gut bacterial metabolite urolithin A (UA) mitigates Ca2+ entry in T cells by regulating miR-10a-5p. Front Immunol. https://doi.org/10.3389/fimmu.2019.01737

Download references

Acknowledgments

The authors are grateful to Mr. Karsten Fatur for his proof reading as a native speaker and a scientist.

Funding

For this research, the authors did not receive any extra founding. Research was founded by the organizations, where the authors are affiliated: University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia and Jožef Stefan Institute, Department of Biotechnology, Ljubljana, Slovenia.

Author information

Authors and Affiliations

Authors

Contributions

SS (PhD student) wrote the first draft of the manuscript. SK revised the manuscript.

Corresponding author

Correspondence to Spase Stojanov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanov, S., Kreft, S. Gut Microbiota and the Metabolism of Phytoestrogens. Rev. Bras. Farmacogn. 30, 145–154 (2020). https://doi.org/10.1007/s43450-020-00049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43450-020-00049-x

Keywords

Navigation