Skip to main content
Log in

Redox homeostasis in human renal cells that had been treated with amphotericin B in combination with selected 1,3,4-thiadiazole derivatives

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The use of amphotericin B (AmB) in the therapy of systemic mycosis is associated with strong side effects, including nephrotoxicity, and hepatotoxicity. Therefore, agents that can reduce the toxic effects of AmB while acting synergistically as antifungal agents are currently being sought. 1,3,4-thiadiazole derivatives are promising compounds that have an antifungal activity and act synergically with AmB. Such combinations might allow the dose of AmB, which is essential for preventing patients from having serious side effects, to be decreased. This might result from the antioxidant properties of 1,3,4-thiadiazoles. Thus, the aim of the study was to investigate redox homeostasis in human renal proximal tubule epithelial cells (RPTEC) after they had been treated with AmB in combination with 1,3,4-thiadiazole derivatives.

Methods

Cellular redox homeostasis was assessed by investigating the total antioxidant capacity (TAC) of cells, the malondialdehyde (MDA) concentration, and the activity of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). TAC was measured using an ABTS method. The MDA concentration, and the activity of SOD, GPX, and CAT were determined spectrophotometrically using commercially available assays. Additionally, the antioxidant defense system-related gene expression profile was determined using oligonucleotide microarrays (HG-U133A 2.0). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to confirm the microarray results.

Results

Amphotericin B and selected 1,3,4-thiadiazole derivatives had a significant effect on the total antioxidant capacity of the RPTEC cells, and the activity of the antioxidant enzymes. We also revealed that the effect of thiadiazoles on the SOD and CAT activities is dependent on the treatment of RPTEC cells with AmB. At the transcriptional level, the expression of several genes was affected by the studied compounds and their combinations.

Conclusions

The results confirmed that thiadiazoles can stimulate the RPTEC cells to defend against the oxidative stress that is generated by AmB. In addition, together with the previously demonstrated synergistic antifungal activity, and low nephrotoxicity, these compounds have the potential to be used in new therapeutic strategies in the treatment of fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author.

Abbreviations

ABTS:

diammonium 2,2'azinobis[3-ethyl-2,3-dihydrobenzothiazole-6-sulphonate

AmB:

amphotericin B

C1:

1,3,4-thiadiazole derivative

CAT:

catalase

CYP1B1:

cytochrome P450 Family 1 Subfamily B Member 1

DEGs:

differentially expressed genes

DMSO:

dimethyl sulfoxide

ERCC8:

ERCC Excision Repair 8, CSA Ubiquitin Ligase Complex Subunit

GDF15:

growth differentiation 15

GPX:

glutathione peroxidase

GPX3:

glutathione peroxidase 3

GPX7:

glutathione peroxidase 7

MDA:

malondialdehyde

N:

1,3,4-thiadiazole derivative

ROS:

reactive oxygen species

RPTEC:

renal proximal tubule epithelial cells

RT-qPCR:

quantitative reverse transcription polymerase chain reaction

SEPP1:

selenoprotein P

SIK1:

salt inducible kinase 1

SOD:

superoxide dismutase

SOD2:

superoxide dismutase 2, mitochondrial

TAC:

total antioxidant capacity

References

  1. Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, Queiroz-Telles F. Sixty years of amphotericin B: an overview of the Main Antifungal Agent used to treat invasive fungal infections. Infect Dis Ther. 2021;10(1):115–47.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grela E, Piet M, Luchowski R, Grudzinski W, Paduch R, Gruszecki WI. Imaging of human cells exposed to an antifungal antibiotic amphotericin B reveals the mechanisms associated with the drug toxicity, and cell defence. Sci Rep. 2018;8(1):14067.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carolus H, Pierson S, Lagrou K, Van Dijck P, Amphotericin B. Other Polyenes-Discovery, Clinical Use, Mode of Action, and Drug Resistance. J Fungi (Basel). 2020;6(4):321.

    Article  CAS  PubMed  Google Scholar 

  4. Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases, and aging. Arch Toxicol. 2023;97(10):2499–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287–93.

    Google Scholar 

  6. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532–53.

    Article  PubMed  Google Scholar 

  7. Gola J, Skubis A, Sikora B, Kruszniewska-Rajs C, Adamska J, Mazurek U, et al. Expression profiles of genes related to melatonin, and oxidative stress in human renal proximal tubule cells treated with antibiotic amphotericin B, and its modified forms. Turk J Biol. 2015;39(6):856–64.

    Article  CAS  Google Scholar 

  8. Hong YA, Park CW. Catalytic antioxidants in the kidney. Antioxid (Basel). 2021;10(1):130.

    Article  CAS  Google Scholar 

  9. Chudzik B, Bonio K, Dabrowski W, Pietrzak D, Niewiadomy A, Olender A, et al. Synergistic antifungal interactions of amphotericin B with 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol. Sci Rep. 2019;9(1):12945.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chudzik B, Bonio K, Dabrowski W, Pietrzak D, Niewiadomy A, Olender A, et al. Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical, and vibrational spectroscopic studies. PLoS ONE. 2019;14(9):e0222775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dróżdż A, Kubera D, Sławińska-Brych A, Matwijczuk A, Ślusarczyk L, Czernel G, et al. Synergistic antifungal interactions between antibiotic amphotericin B, and selected 1,3,4-thiadiazole derivatives, determined by Microbiological, Cytochemical, and Molecular Spectroscopic studies. Int J Mol Sci. 2023;24(4):3430.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dróżdż A, Sławińska-Brych A, Kubera D, Kimsa-Dudek M, Gola JM, Adamska J, et al. Effect of antibiotic amphotericin B combinations with selected 1,3,4-Thiadiazole derivatives on RPTECs in an in vitro model. Int J Mol Sci. 2022;23(23):15260.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Muğlu H, Akın M, Çavuş MS, Yakan H, Şaki N, Güzel E. Exploring of antioxidant, and antibacterial properties of novel 1,3,4-thiadiazole derivatives: facile synthesis, structural elucidation, and DFT approach to antioxidant characteristics. Comput Biol Chem. 2022;96:107618.

    Article  PubMed  Google Scholar 

  14. Kruszniewska-Rajs C, Strzałka-Mrozik B, Kimsa-Dudek M, Synowiec-Wojtarowicz A, Chrobak E, Bębenek E, et al. The influence of Betulin, and its derivatives EB5, and ECH147 on the antioxidant status of human renal proximal tubule epithelial cells. Int J Mol Sci. 2022;23(5):2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kimsa-Dudek M, Synowiec-Wojtarowicz A, Derewniuk M, Gawron S, Paul-Samojedny M, Kruszniewska-Rajs C, et al. Impact of fluoride, and a static magnetic field on the gene expression that is associated with the antioxidant defense system of human fibroblasts. Chem Biol Interact. 2018;287:13–9.

    Article  CAS  PubMed  Google Scholar 

  16. Strzalka-Mrozik B, Stanik-Walentek A, Kapral M, Kowalczyk M, Adamska J, Gola J, et al. Differential expression of transforming growth factor-beta isoforms in bullous keratopathy corneas. Mol Vis. 2010;16:161–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cano A, Maestre AB, Hernández-Ruiz J, Arnao MB. ABTS/TAC methodology: main milestones, and recent applications. Processes. 2023;11:185.

    Article  CAS  Google Scholar 

  18. Jakovljević K, Joksović MD, Botta B, Jovanović LS, Avdović E, Marković Z, et al. Novel 1, 3, 4-thiadiazole conjugates derived from protocatechuic acid: synthesis, antioxidant activity, and computational, and electrochemical studies. C R Chim. 2019;22(8):585–98.

    Article  Google Scholar 

  19. Amer Z, Al-Tamimi EO. Synthesis, and characterization of New 1,3,4-Thiadiazole Derivatives Containing Azo Group from Acid Hydrazide and studying their antioxidant activity. Chem Methodol. 2022;6(8):604–11.

    CAS  Google Scholar 

  20. Andrews FA, Beggs WH, Sarosi GA. Influence of antioxidants on the bioactivity of amphotericin B. Antimicrob Agents Chemother. 1977;11(4):615–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim JH, Faria NC, Martins Mde L, Chan KL, Campbell BC. Enhancement of antimycotic activity of amphotericin B by targeting the oxidative stress response of Candida, and cryptococcus with natural dihydroxybenzaldehydes. Front Microbiol. 2012;3:261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mesa-Arango AC, Trevijano-Contador N, Román E, Sánchez-Fresneda R, Casas C, Herrero E, et al. The production of reactive oxygen species is a universal action mechanism of amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother. 2014;58(11):6627–38.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kocot J, Kiełczykowska M, Dąbrowski W, Piłat J, Rudzki S, Musik I. Total antioxidant status value, and superoxide dismutase activity in human colorectal cancer tissue depending on the stage of the disease: a pilot study. Adv Clin Exp Med. 2013;22(3):431–7.

    PubMed  Google Scholar 

  24. Strycharz-Dudziak M, Kiełczykowska M, Drop B, Świątek Ł, Kliszczewska E, Musik I, et al. Total antioxidant status (TAS), Superoxide dismutase (SOD), and Glutathione Peroxidase (GPx) in Oropharyngeal Cancer Associated with EBV infection. Oxid Med Cell Longev. 2019;2019:5832410.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, et al. Paradoxical roles of antioxidant enzymes: Basic mechanisms, and Health implications. Physiol Rev. 2016;96(1):307–64.

    Article  CAS  PubMed  Google Scholar 

  26. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA), and relatives in biological samples: Analytical, and biological challenges. Anal Biochem. 2017;524:13–30.

    Article  CAS  PubMed  Google Scholar 

  27. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde, and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng Z, Teo G, Krueger S, Rock TM, Koh HW, Choi H, et al. Differential dynamics of the mammalian mRNA, and protein expression response to misfolding stress. Mol Syst Biol. 2016;12(1):855.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Falero-Perez J, Song YS, Sorenson CM, Sheibani N. CYP1B1: a key regulator of redox homeostasis. Trends Cell Mol Biol. 2018;13:27–45.

    PubMed  PubMed Central  Google Scholar 

  30. Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol. 2023;14:1147414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D’Errico M, Pascucci B, Iorio E, Van Houten B, Dogliotti E. The role of CSA, and CSB protein in the oxidative stress response. Mech Ageing Dev. 2013;134(5–6):261–9.

    Article  PubMed  Google Scholar 

  32. Cordisco S, Tinaburri L, Teson M, Orioli D, Cardin R, Degan P, et al. Cockayne Syndrome Type A protein protects primary human keratinocytes from Senescence. J Invest Dermatol. 2019;139(1):38–50.

    Article  CAS  PubMed  Google Scholar 

  33. Hseu YC, Hsu TW, Lin HD, Chen CH, Chen SC. Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: the role of CSA in oxidative stress. Food Chem Toxicol. 2017;103:253–60.

    Article  CAS  PubMed  Google Scholar 

  34. Burk RF, Hill KE. Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta. 2009;1790(11):1441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye R, Huang J, Wang Z, Chen Y, Dong Y. The role and mechanism of essential selenoproteins for Homeostasis. Antioxid (Basel). 2022;11(5):973.

    Article  CAS  Google Scholar 

  36. Zhang Y, Chen X. Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab. 2011;300(1):E77–85.

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Shen P, Liao S, Duan L, Zhu D, Chen J, et al. Selenoprotein P inhibits cell proliferation, and ROX production in HCC cells. PLoS ONE. 2020;15(7):e0236491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hekal MH, Farag PS, Hemdan MM, El-Sayed AA, Hassaballah AI, El-Sayed WM. New 1,3,4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. RSC Adv. 2023;13(23):15810–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gur M, Zurnaci M, Altinoz E, Sener N, Sahin C, Senturan M, et al. Novel 1,3,4-Thiadiazole derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting agents, and their ADMET characterizations. Hittite J Sci Eng. 2023;10(2):99–116.

    Article  Google Scholar 

  40. Pourrajab F, Forouzannia SK, Tabatabaee SA. Novel immunomodulatory function of 1,3,4-thiadiazole derivatives with leishmanicidal activity. J Antimicrob Chemother. 2012;67(8):1968–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Polish National Science Centre grant 2019/35/B/NZ7/02756.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.M.G., M.K.-D. A.M., and M.G.; methodology, M.K.-D., C.K.-R., and J.A.; software, M.K.-D.; validation, C.K.-R.; formal analysis, M.K.-D., and B.S.-M.; investigation, M.K.-D., C.K.-R., A.M., D.K., and J.A.; resources, M.K.-D.; data curation, M.K.-D., C.K.-R., and J.A.; writing—original draft preparation, M.K.-D.; writing—review and editing, J.M.G., A.M., D.K., and B.S.-M.; visualization, M.K.-D. and C.K.-R.; supervision, J.M.G.; project administration, M.G. and J.M.G.; funding acquisition, M.G. All of the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Magdalena Kimsa-Dudek.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimsa-Dudek, M., Kruszniewska-Rajs, C., Adamska, J. et al. Redox homeostasis in human renal cells that had been treated with amphotericin B in combination with selected 1,3,4-thiadiazole derivatives. Pharmacol. Rep (2024). https://doi.org/10.1007/s43440-024-00592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43440-024-00592-7

Keywords

Navigation