Skip to main content

Advertisement

Log in

Relationship between thyroid hormones and central nervous system metabolism in physiological and pathological conditions

  • Special Issue: Review
  • Energy metabolism in the physiology and pathology of the central nervous system
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Thyroid hormones (THs) play an important role in the regulation of energy metabolism. They also take part in processes associated with the central nervous system (CNS), including survival and differentiation of neurons and energy expenditure. It has been reported that a correlation exists between the functioning of the thyroid gland and the symptoms of CNS such as cognitive impairment, depression, and dementia. Literature data also indicate the influence of THs on the pathogenesis of CNS diseases, such as Alzheimer’s disease, epilepsy, depression, and Parkinson’s disease. This review describes the relationship between THs and metabolism in the CNS, the effect of THs on the pathological conditions of the CNS, and novel options for treating these conditions with TH derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ACC:

Anterior cingulate cortex

AD:

Alzheimer’s disease

anti-TPO:

Antithyroid peroxidase antibodies

BBB:

Blood–brain barrier

CNS:

Central nervous system

GH:

Growth hormone

GD:

Grave’s disease

HE:

Hashimoto encephalopathy

IGF:

Insulin-like growth factor

LAT:

L-type amino acid transporters

MCT8:

Monocarboxylate-8 transporters

ml/Cr:

Myoinositol/creatine

MS:

Multiple sclerosis

mTOR:

Mechanistic target of rapamycin

NAA/Cr:

N-Acetyl-aspartate/creatine

OATP1C1:

Organic anion transporter1 C1

PCG:

Posterior cingulate gyrus

PD:

Parkinson’s disease

TH:

Thyroid hormone

TRH:

Thyrotropin-releasing hormone

TSH:

Thyrotropin

UCP1:

Uncoupling protein 1

References

  1. Gauthier BR, Sola-García A, Cáliz-Molina MÁ, Lorenzo PI, Cobo-Vuilleumier N, Capilla-González V, et al. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11): e13260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flamant F, Cheng SY, Hollenberg AN, Moeller LC, Samarut J, Wondisford FE, et al. Thyroid hormone signaling pathways: time for a more precise nomenclature. Endocrinology. 2017;158(7):2052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mullur R, Liu Y-Y, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duntas LH, Brenta G. A renewed focus on the association between thyroid hormones and lipid metabolism. Front Endocrinol (Lausanne). 2018;9:511.

    Article  Google Scholar 

  6. Iwen KA, Oelkrug R, Brabant G. Effects of thyroid hormones on thermogenesis and energy partitioning. J Mol Endocrinol. 2018;60(3):R157–70.

    Article  CAS  PubMed  Google Scholar 

  7. Yehuda-Shnaidman E, Kalderon B, Bar-Tana J. Thyroid hormone, thyromimetics, and metabolic efficiency. Endocr Rev. 2014;35(1):35–58.

    Article  CAS  PubMed  Google Scholar 

  8. Sentis SC, Oelkrug R, Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr Connect. 2021;10(2):R106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawicka-Gutaj N, Erampamoorthy A, Zybek-Kocik A, Kyriacou A, Zgorzalewicz-Stachowiak M, Czarnywojtek A, et al. The role of thyroid hormones on skeletal muscle thermogenesis. Metabolites. 2022;12(4):336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cioffi F, Senese R, Lanni A, Goglia F. Thyroid hormones and mitochondria: With a brief look at derivatives and analogues. Mol Cell Endocrinol. 2013;379(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  11. Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, et al. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal. 2018;11(536):eaam5855.

    Article  PubMed  Google Scholar 

  12. Kapoor R, Fanibunda SE, Desouza LA, Guha SK, Vaidya VA. Perspectives on thyroid hormone action in adult neurogenesis. J Neurochem. 2015;133(5):599–616.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng Y, Haorah J. How does the brain remove its waste metabolites from within? Int J Physiol Pathophysiol Pharmacol. 2019;11(6):238–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmed RG. Hypothyroidism and brain developmental players. Thyroid Res. 2015;8:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Landers K, Richard K. Traversing barriers: how thyroid hormones pass placental, blood-brain and blood-cerebrospinal fluid barriers. Mol Cell Endocrinol. 2017;458:22–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lazarus JH, Taylor PN. Hypothyroxinaemia and brain development. Acta Endocrinol (Buchar). 2016;12(1):1–6.

    Article  CAS  Google Scholar 

  17. Stepien BK, Huttner WB. Transport, metabolism, and function of thyroid hormones in the developing mammalian brain. Front Endocrinol (Lausanne). 2019;10:209.

    Article  Google Scholar 

  18. Chan SY, Vasilopoulou E, Kilby MD. The role of the placenta in thyroid hormone delivery to the fetus. Nat Clin Pract Endocrinol Metab. 2009;5(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  19. López-Espíndola D, García-Aldea Á, Gómez de la Riva I, Rodríguez-García AM, Salvatore D, Visser TJ, et al. Thyroid hormone availability in the human fetal brain: novel entry pathways and role of radial glia. Brain Struct Funct. 2019;224(6):2103–19.

    Article  PubMed  Google Scholar 

  20. Masnada S, Sarret C, Antonello CE, Fadilah A, Krude H, Mura E, et al. Movement disorders in MCT8 deficiency/Allan-Herndon-Dudley Syndrome. Mol Genet Metab. 2022;135(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues TB, Ceballos A, Grijota-Martínez C, Nuñez B, Refetoff S, Cerdán S, et al. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter Slc16a2 (Mct8). PLoS ONE. 2013;8(10): e74621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Strømme P, Groeneweg S, Lima de Souza EC, Zevenbergen C, Torgersbråten A, Holmgren A, et al. Mutated thyroid hormone transporter OATP1C1 associates with severe brain hypometabolism and Juvenile neurodegeneration. Thyroid. 2018;28(11):1406–15.

    Article  PubMed  Google Scholar 

  23. Springer D, Jiskra J, Limanova Z, Zima T, Potlukova E. Thyroid in pregnancy: from physiology to screening. Crit Rev Clin Lab Sci. 2017;54(2):102–16.

    Article  CAS  PubMed  Google Scholar 

  24. Andersen SL. Frequency and outcomes of maternal thyroid function abnormalities in early pregnancy. Scand J Clin Lab Invest. 2019;79(1–2):99–107.

    Article  CAS  PubMed  Google Scholar 

  25. Weiner A, Oberfield S, Vuguin P. The laboratory features of congenital hypothyroidism and approach to therapy. NeoReviews. 2020;21(1):e37-44.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Uchida K, Suzuki M. Congenital hypothyroidism and brain development: association with other psychiatric disorders. Front Neurosci. 2021;15: 772382.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Talhada D, Santos CRA, Gonçalves I, Ruscher K. Thyroid hormones in the brain and their impact in recovery mechanisms after stroke. Front Neurol. 2019;10:1103.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Itoh Y, Esaki T, Kaneshige M, Suzuki H, Cook M, Sokoloff L, et al. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone α or β receptor gene. Proc Natl Acad Sci USA. 2001;98(17):9913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol. 2021;112:123–36.

    Article  CAS  PubMed  Google Scholar 

  30. Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci. 2015;16(11):25959–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V. Fatty acids in energy metabolism of the central nervous system. Biomed Res Int. 2014;2014: 472459.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23(13):5928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in development, myelin generation and beyond. Cells. 2019;8(11):1424.

    Article  CAS  PubMed Central  Google Scholar 

  34. Marangon D, Boccazzi M, Lecca D, Fumagalli M. Regulation of oligodendrocyte functions: targeting lipid metabolism and extracellular matrix for myelin repair. J Clin Med. 2020;9(2):470.

    Article  CAS  PubMed Central  Google Scholar 

  35. Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 2017;11:24.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Das M, Ghosh M, Gharami K, Das S. Thyroid hormone and astrocyte differentiation. Vitam Horm. 2018;106:283–312.

    Article  CAS  PubMed  Google Scholar 

  37. Morte B, Bernal J. Thyroid hormone action: astrocyte-neuron communication. Front Endocrinol (Lausanne). 2014;5:82. https://doi.org/10.3389/fendo.2014.00082.

    Article  Google Scholar 

  38. Noda M. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders. Front Cell Neurosci. 2015;9:194.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dezonne RS, Lima FRS, Trentin AG, Gomes FC. Thyroid hormone and astroglia: endocrine control of the neural environment. J Neuroendocrinol. 2015;27(6):435–45.

    Article  CAS  PubMed  Google Scholar 

  40. Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing. Biochim Biophys Acta. 2010;1797(6–7):961–7.

    Article  CAS  PubMed  Google Scholar 

  41. Bowers J, Terrien J, Clerget-Froidevaux MS, Gothié JD, Rozing MP, Westendorp RGJ, et al. Thyroid hormone signaling and homeostasis during aging. Endocr Rev. 2013;34(4):556–89.

    Article  CAS  PubMed  Google Scholar 

  42. Rozing MP, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Frölich M, de Craen AJM, et al. Familial longevity is associated with decreased thyroid function. J Clin Endocrinol Metab. 2010;95(11):4979–84.

    Article  CAS  PubMed  Google Scholar 

  43. Atzmon G, Barzilai N, Surks MI, Gabriely I. Genetic predisposition to elevated serum thyrotropin is associated with exceptional longevity. J Clin Endocrinol Metab. 2009;94(12):4768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    Article  CAS  PubMed  Google Scholar 

  45. Giustina A, Wehrenberg WB. Influence of thyroid hormones on the regulation of growth hormone secretion. Eur J Endocrinol. 1995;133(6):646–53.

    Article  CAS  PubMed  Google Scholar 

  46. Derbré F, Gomez-Cabrera MC, Nascimento AL, Sanchis-Gomar F, Martinez-Bello VE, Tresguerres JAF, et al. Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training. Age (Dordr). 2012;34(3):669–79.

    Article  Google Scholar 

  47. Varela L, Martínez-Sánchez N, Gallego R, Vázquez MJ, Roa J, Gándara M, et al. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol. 2012;227(2):209–22.

    Article  CAS  PubMed  Google Scholar 

  48. Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette FA, Topisirovic I, et al. mTOR as a central regulator of lifespan and aging. F1000Res. 2019;8:F1000.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chiovato L, Magri F, Carlé A. Hypothyroidism in context: where we’ve been and where we’re going. Adv Ther. 2019;36(Suppl 2):47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390(10101):1550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jurado-Flores M, Warda F, Mooradian A. Pathophysiology and clinical features of neuropsychiatric manifestations of thyroid disease. J Endocr Soc. 2022;6(2):bvab194.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Przybylak M, Grabowski J, Bidzan L. Cognitive functions and thyroid hormones secretion disorders. Psychiatr Pol. 2021;55(2):309–21.

    Article  PubMed  Google Scholar 

  53. Bauer M, Silverman DHS, Schlagenhauf F, London ED, Geist CL, van Herle K, et al. Brain glucose metabolism in hypothyroidism: a positron emission tomography study before and after thyroid hormone replacement therapy. J Clin Endocrinol Metab. 2009;94(8):2922–9.

    Article  CAS  PubMed  Google Scholar 

  54. Bladowska J, Waliszewska-Prosół M, Ejma M, Sąsiadek M. The metabolic alterations within the normal appearing brain in patients with Hashimoto’s thyroiditis are correlated with hormonal changes. Metab Brain Dis. 2019;34(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  55. Waliszewska-Prosół M, Bladowska J, Budrewicz S, Sąsiadek M, Dziadkowiak E, Ejma M. The evaluation of Hashimoto’s thyroiditis with event-related potentials and magnetic resonance spectroscopy and its relation to cognitive function. Sci Rep. 2021;11:2480.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Quinlan P, Horvath A, Eckerström C, Wallin A, Svensson J. Higher thyroid function is associated with accelerated hippocampal volume loss in Alzheimer’s disease. Psychoneuroendocrinology. 2022;139: 105710.

    Article  CAS  PubMed  Google Scholar 

  57. Göbel A, Heldmann M, Göttlich M, Goerges R, Nieberding R, Sartorius A, et al. Partial withdrawal of levothyroxine treated disease leads to brain activations and effects on performance in a working memory task: a pilot study. J Neuroendocrinol. 2019;31(4): e12707.

    Article  PubMed  Google Scholar 

  58. Göbel A, Göttlich M, Reinwald J, Rogge B, Uter JC, Heldmann M, et al. The Influence of thyroid hormones on brain structure and function in humans. Exp Clin Endocrinol Diabetes. 2020;128(06/07):432–6.

    Article  PubMed  Google Scholar 

  59. Zhao S, Xia Y, Huang Y, Zou H, Wang X, Chen Z, et al. The correlation between thyroid function, frontal gray matter, and executive function in patients with major depressive disorder. Front Endocrinol (Lausanne). 2021;23(12): 779693.

    Article  Google Scholar 

  60. Uter J, Heldmann M, Rogge B, Obst M, Steinhardt J, Brabant G, et al. Patients with mutations of the Thyroid hormone beta-receptor show an ADHD-like phenotype for performance monitoring: an electrophysiological study. Neuroimage Clin. 2020;19(26): 102250.

    Article  Google Scholar 

  61. Heldmann M, Chatterjee K, Moran C, Rogge B, Steinhardt J, Wagner-Altendorf T, et al. Reduced pituitary size in subjects with mutations in the THRB gene and thyroid hormone resistance. Endocr Connect. 2022;11(1): e210473.

    Article  CAS  PubMed  Google Scholar 

  62. Dadej D, Skraba K, Matyjaszek-Matuszek B, Świrska J, Ruchała M, Ziemnicka K. Presenting symptoms and endocrine dysfunction in Rathke cleft cysts - a two-centre experience. Endokrynol Pol. 2021;72(5):505–11.

    Article  PubMed  Google Scholar 

  63. Biondi B, Cappola AR, Cooper DS. Subclinical hypothyroidism: a review. JAMA. 2019;322(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  64. Azim S, Nasr C. Subclinical hypothyroidism: when to treat. Cleve Clin J Med. 2019;86(2):101–10.

    Article  PubMed  Google Scholar 

  65. Zhang Y, Yang Y, Tao B, Lv Q, Lui S, He L. Gray matter and regional brain activity abnormalities in subclinical hypothyroidism. Front Endocrinol (Lausanne). 2021;12: 582519.

    Article  Google Scholar 

  66. Rieben C, Segna D, da Costa BR, Collet T-H, Chaker L, Aubert CE, et al. Subclinical thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies. J Clin Endocrinol Metab. 2016;101(12):4945–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Akintola AA, Jansen SW, van Bodegom D, van der Grond J, Westendorp RG, de Craen AJM, et al. Subclinical hypothyroidism and cognitive function in people over 60 years: a systematic review and meta-analysis. Front Aging Neurosci. 2015;7:150.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mazzù I, Mosti S, Caltagirone C, Carlesimo GA. Hashimoto’s encephalopathy: neuropsychological findings. Neurol Sci. 2012;33(3):653–6.

    Article  PubMed  Google Scholar 

  69. Zhou JY, Xu B, Lopes J, Blamoun J, Li L. Hashimoto encephalopathy: literature review. Acta Neurol Scand. 2017;135(3):285–90.

    Article  CAS  PubMed  Google Scholar 

  70. Sliwinska A, Fumuso P, Stringer B, Ansar M, Baldwin J. Hashimoto encephalopathy with status epilepticus. Cureus. 2020;12(12):e11857.

    PubMed  PubMed Central  Google Scholar 

  71. Churilov LP, Sobolevskaia PA, Stroev YI. Thyroid gland and brain: enigma of Hashimoto’s encephalopathy. Best Pract Res Clin Endocrinol Metab. 2019;33(6): 101364.

    Article  PubMed  Google Scholar 

  72. Mocellin R, Walterfang M, Velakoulis D. Hashimoto’s encephalopathy. CNS Drugs. 2007;21(10):799–811.

    Article  CAS  PubMed  Google Scholar 

  73. Moodley K, Botha J, Raidoo DM, Naidoo S. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex. J Neurol Sci. 2011;302(1):114–7.

    Article  CAS  PubMed  Google Scholar 

  74. Jegatheeswaran V, Chan M, Chen YA. MRI findings of two patients with hashimoto encephalopathy. Cureus. 2020;13(6):e15697.

    Google Scholar 

  75. Mahad DJ, Staugaitis S, Ruggieri P, Parisi J, Kleinschmidt-Demasters BK, Lassmann H, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis and primary CNS demyelination. J Neurol Sci. 2005;228(1):3–5.

    Article  PubMed  Google Scholar 

  76. Chen N, Qin W, Wei C, Wang X, Li K. Time course of Hashimoto’s encephalopathy revealed by MRI: report of two cases. J Neurol Sci. 2011;300(1–2):169–72.

    Article  PubMed  Google Scholar 

  77. De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016;388(10047):906–18.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301–16.

    Article  PubMed  Google Scholar 

  79. Doubleday AR, Sippel RS. Hyperthyroidism. Gland Surg. 2020;9(1):124–35.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schmidt M, Huff W, Dietlein M, Kobe C, Schicha H. Interactions between brain, psyche and thyroid. Nuklearmedizin. 2008;47(6):225–34.

    Article  CAS  PubMed  Google Scholar 

  81. Kumar M, Singh S, Rana P, Kumar P, Sekhri T, Kanwar R, et al. Neurometabolite changes in hyperthyroid patients before and after antithyroid treatment: an in vivo 1H MRS study. Front Hum Neurosci. 2021;15: 739917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schreckenberger MF, Egle UT, Drecker S, Buchholz HG, Weber MM, Bartenstein P, et al. Positron emission tomography reveals correlations between brain metabolism and mood changes in hyperthyroidism. J Clin Endocrinol Metab. 2006;91(12):4786–91.

    Article  CAS  PubMed  Google Scholar 

  83. Holmberg M, Malmgren H, Heckemann RA, et al. A longitudinal study of medial temporal lobe volumes in graves disease. J Clin Endocrinol Metab. 2022;107(4):1040–52.

    Article  PubMed  Google Scholar 

  84. Zhang W, Song L, Yin X, Zhang J, Liu C, Wang J, et al. Grey matter abnormalities in untreated hyperthyroidism: a voxel-based morphometry study using the DARTEL approach. Eur J Radiol. 2014;83(1):e43-48.

    Article  PubMed  Google Scholar 

  85. Rabbito A, Dulewicz M, Kulczyńska-Przybik A, Mroczko B. Biochemical markers in Alzheimer’s disease. Int J Mol Sci. 2020;21(6):1989.

    Article  CAS  PubMed Central  Google Scholar 

  86. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sengoku R. Aging and Alzheimer’s disease pathology. Neuropathology. 2020;40(1):22–9.

    Article  PubMed  Google Scholar 

  88. Lei P, Ayton S, Bush AI. The essential elements of Alzheimer’s disease. J Biol Chem. 2020;296: 100105.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Figueroa PBS, Ferreira AFF, Britto LR, Doussoulin AP, da Torrão AS. Association between thyroid function and Alzheimer’s disease: a systematic review. Metab Brain Dis. 2021;36(7):1523–43.

    Article  PubMed  Google Scholar 

  90. Johansson P, Almqvist EG, Johansson J-O, Mattsson N, Hansson O, Wallin A, et al. Reduced cerebrospinal fluid level of thyroxine in patients with Alzheimer’s disease. Psychoneuroendocrinology. 2013;38(7):1058–66.

    Article  CAS  PubMed  Google Scholar 

  91. Choi HJ, Byun MS, Yi D, Sohn BK, Lee JH, Lee J-Y, et al. Associations of thyroid hormone serum levels with in-vivo Alzheimer’s disease pathologies. Alzheimers Res Ther. 2017;9:64.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Contreras-Jurado C, Pascual A. Thyroid hormone regulation of APP (β-amyloid precursor protein) gene expression in brain and brain cultured cells. Neurochemistry Int. 2012;60(5):484–7.

    Article  CAS  Google Scholar 

  93. Belakavadi M, Dell J, Grover GJ, Fondell JD. Thyroid hormone suppression of β-amyloid precursor protein gene expression in the brain involves multiple epigenetic regulatory events. Mol Cell Endocrinol. 2011;339(1–2):72–80.

    Article  CAS  PubMed  Google Scholar 

  94. Oldham CE, Wooten CJ, Williams AB, Dixon S, Lopez D. Thyroid hormone enhances neurite outgrowth in neuroscreen 1 cells. Int J Biomed Investig. 2018;1(1):104.

    Google Scholar 

  95. Nomoto S, Kinno R, Ochiai H, Kubota S, Mori Y, Futamura A, et al. The relationship between thyroid function and cerebral blood flow in mild cognitive impairment and Alzheimer’s disease. PLoS ONE. 2019;14(4): e0214676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Quinlan P, Horvath A, Eckerström C, Wallin A, Svensson J. Altered thyroid hormone profile in patients with Alzheimer’s disease. Psychoneuroendocrinology. 2020;121: 104844.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang N, Du H, Wang J, Cheng Y. A pilot study on the relationship between thyroid status and neuropsychiatric symptoms in patients with Alzheimer disease. Chin Med J (Engl). 2012;125(18):3211–6.

    CAS  Google Scholar 

  98. Tobore TO. On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neurol Sci. 2019;40(8):1527–40.

    Article  PubMed  Google Scholar 

  99. Bavarsad K, Hosseini M, Hadjzadeh MAR, Sahebkar A. The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J Cell Physiol. 2019;234(9):14633–40.

    Article  CAS  Google Scholar 

  100. Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66(6):1235–43.

    Article  PubMed  Google Scholar 

  101. Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuron–glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci. 2019;20(5):282–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beghi E. The Epidemiology of Epilepsy. Neuroepidemiology. 2020;54(2):185–91.

    Article  PubMed  Google Scholar 

  103. Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure. 2020;82:65–79.

    Article  PubMed  Google Scholar 

  104. Hiragi T, Ikegaya Y, Koyama R. Microglia after seizures and in epilepsy. Cells. 2018;7(4):26.

    Article  PubMed Central  Google Scholar 

  105. Tamijani SMS, Karimi B, Amini E, Golpich M, Dargahi L, Ali RA, et al. Thyroid hormones: possible roles in epilepsy pathology. Seizure. 2015;31:155–64.

    Article  PubMed  Google Scholar 

  106. Fulton RE, Pearson-Smith JN, Huynh CQ, Fabisiak T, Liang L-P, Aivazidis S, et al. Neuron-specific mitochondrial oxidative stress results in epilepsy, glucose dysregulation and a striking astrocyte response. Neurobiol Dis. 2021;158: 105470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rowley S, Patel M. Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med. 2013;62:121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jankowsky JL, Patterson PH. The role of cytokines and growth factors in seizures and their sequelae. Prog Neurobiol. 2001;63(2):125–49.

    Article  CAS  PubMed  Google Scholar 

  109. Kandratavicius L, Monteiro MR, Assirati JA, Carlotti CG, Hallak JE, Leite JP. Neurotrophins in mesial temporal lobe epilepsy with and without psychiatric comorbidities. J Neuropathol Exp Neurol. 2013;72(11):1029–42.

    Article  PubMed  Google Scholar 

  110. Iughetti L, Lucaccioni L, Fugetto F, Predieri B, Berardi A, Ferrari F. Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides. 2018;72:23–9.

    Article  CAS  PubMed  Google Scholar 

  111. Bilous II, Pavlovych LL, Kamyshnyi AM. Primary hypothyroidism and autoimmune thyroiditis alter the transcriptional activity of genes regulating neurogenesis in the blood of patients. Endocr Regul. 2021;55(1):5–15.

    Article  PubMed  Google Scholar 

  112. Kim SY, Smith MA, Post RM, Rosen JB. Attenuation of kindling-induced decreases in NT-3 mRNA by thyroid hormone depletion. Epilepsy Res. 1998;29(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  113. Rochtus AM, Herijgers D, Jansen K, Decallonne B. Antiseizure medications and thyroid hormone homeostasis: literature review and practical recommendations. Epilepsia. 2022;63(2):259–70.

    Article  PubMed  Google Scholar 

  114. Einarsdottir MJ, Olafsson E, Sigurjonsdottir HA. Antiepileptic drugs are associated with central hypothyroidism. Acta Neurol Scand. 2019;139(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  115. Güngör O, Özkaya AK, Temiz F. The effect of antiepileptic drugs on thyroid hormonal function: valproic acid and phenobarbital. Acta Neurol Belg. 2020;120(3):615–9.

    Article  PubMed  Google Scholar 

  116. Hamed SA. The effect of antiepileptic drugs on thyroid hormonal function: causes and implications. Expert Rev Clin Pharmacol. 2015;8(6):741–50.

    Article  CAS  PubMed  Google Scholar 

  117. Miyake Z, Ishii K, Tamaoka A. Hypothyroidism induced by phenytoin and gabapentin. Medicine (Baltimore). 2018;97(43): e12938.

    Article  Google Scholar 

  118. Elshorbagy HH, Barseem NF, Suliman HA, Talaat E, Alshokary AH, Abdelghani WE, et al. the impact of antiepileptic drugs on thyroid function in children with epilepsy: new versus old. Iran J Child Neurol. 2020;14(1):31–41.

    PubMed  PubMed Central  Google Scholar 

  119. Wang H-Q, Wang Z-Z, Chen N-H. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol Res. 2021;167: 105542.

    Article  CAS  PubMed  Google Scholar 

  120. Stewart DE, Gucciardi E, Grace SL. Depression. BMC Womens Health. 2004;4(Suppl 1):S19.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161):2299–312.

    Article  PubMed  Google Scholar 

  122. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22(4):527–36.

    Article  CAS  PubMed  Google Scholar 

  123. Milaneschi Y, Lamers F, Berk M, Penninx BWJH. Depression heterogeneity and its biological underpinnings: toward immunometabolic depression. Biol Psychiatry. 2020;88(5):369–80.

    Article  CAS  PubMed  Google Scholar 

  124. Mohammad MYH, Bushulaybi NA, AlHumam AS, AlGhamdi AY, Aldakhil HA, Alumair NA, et al. Prevalence of depression among hypothyroid patients attending the primary healthcare and endocrine clinics of King Fahad Hospital of the University (KFHU). J Family Med Prim Care. 2019;8(8):2708–13.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Qiao D, Liu H, Zhang X, Lei L, Sun N, Yang C, et al. Exploring the potential of thyroid hormones to predict clinical improvements in depressive patients: a machine learning analysis of the real-world based study. J Affect Disord. 2022;299:159–65.

    Article  CAS  PubMed  Google Scholar 

  126. Karakatsoulis GN, Tsapakis E-M, Mitkani C, Fountoulakis KN. Subclinical thyroid dysfunction and major depressive disorder. Hormones (Athens). 2021;20(4):613–21.

    Article  Google Scholar 

  127. Airaksinen J, Komulainen K, García-Velázquez R, Määttänen I, Gluschkoff K, Savelieva K, et al. Subclinical hypothyroidism and symptoms of depression: evidence from the National Health and Nutrition Examination Surveys (NHANES). Compr Psychiatry. 2021;109: 152253.

    Article  PubMed  Google Scholar 

  128. Głombik K, Detka J, Kurek A, Budziszewska B. Impaired brain energy metabolism: involvement in depression and hypothyroidism. Front Neurosci. 2020;14: 586939.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Głombik K, Detka J, Bobula B, Bąk J, Kusek M, Tokarski K, et al. Contribution of hypothyroidism to cognitive impairment and hippocampal synaptic plasticity regulation in an animal model of depression. Int J Mol Sci. 2021;22(4):1599.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bauer M, Whybrow PC. Role of thyroid hormone therapy in depressive disorders. J Endocrinol Invest. 2021;44(11):2341–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lorentzen R, Kjær JN, Østergaard SD, Madsen MM. Thyroid hormone treatment in the management of treatment-resistant unipolar depression: a systematic review and meta-analysis. Acta Psychiatr Scand. 2020;141(4):316–26.

    Article  CAS  PubMed  Google Scholar 

  132. Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18(3):551.

    Article  PubMed Central  Google Scholar 

  133. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397(10291):2284–303.

    Article  CAS  PubMed  Google Scholar 

  134. Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.

    Article  PubMed  Google Scholar 

  135. Tan Y, Gao L, Yin Q, Sun Z, Man X, Du Y, et al. Thyroid hormone levels and structural parameters of thyroid homeostasis are correlated with motor subtype and disease severity in euthyroid patients with Parkinson’s disease. Int J Neurosci. 2021;131(4):346–56.

    Article  CAS  PubMed  Google Scholar 

  136. Umehara T, Matsuno H, Toyoda C, Oka H. Thyroid hormone level is associated with motor symptoms in de novo Parkinson’s disease. J Neurol. 2015;262(7):1762–8.

    Article  CAS  PubMed  Google Scholar 

  137. Mohammadi S, Dolatshahi M, Rahmani F. Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors. J Endocrinol Invest. 2021;44(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  138. Zhang J-X, Li X. Changes in serum thyroid hormone levels in psychiatric patients treated with second-generation antipsychotics. Endokrynol Pol. 2020;71(4):292–8.

    CAS  PubMed  Google Scholar 

  139. Runfola M, Perni M, Yang X, Marchese M, Bacci A, Mero S, et al. Identification of a thyroid hormone derivative as a pleiotropic agent for the treatment of Alzheimer’s disease. Pharmaceuticals (Basel). 2021;14(12):1330.

    Article  CAS  Google Scholar 

  140. Zhang M, Ma Z, Qin H, Yao Z. Thyroid hormone potentially benefits multiple sclerosis via facilitating remyelination. Mol Neurobiol. 2016;53(7):4406–16.

    Article  CAS  PubMed  Google Scholar 

  141. Cunniffe N, Coles A. Promoting remyelination in multiple sclerosis. J Neurol. 2021;268(1):30–44.

    Article  PubMed  Google Scholar 

  142. Pagnin M, Kondos-Devcic D, Chincarini G, Cumberland A, Richardson SJ, Tolcos M. Role of thyroid hormones in normal and abnormal central nervous system myelination in humans and rodents. Front Neuroendocrinol. 2021;61: 100901.

    Article  CAS  PubMed  Google Scholar 

  143. Lee JY, Kim MJ, Deliyanti D, Azari MF, Rossello F, Costin A, et al. Overcoming monocarboxylate transporter 8 (MCT8)-deficiency to promote human oligodendrocyte differentiation and myelination. EBioMedicine. 2017;25:122–35.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kim MJ, Petratos S. Oligodendroglial lineage cells in thyroid hormone-deprived conditions. Stem Cells Int. 2019;2019:5496891.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hartley MD, Banerji T, Tagge IJ, Kirkemo LL, Chaudhary P, Calkins E, et al. Myelin repair stimulated by CNS-selective thyroid hormone action. JCI Insight. 2019;4(8):e126329.

    Article  PubMed Central  Google Scholar 

  146. Chaudhary P, Marracci G, Calkins E, Pocius E, Bensen A, Scanlan T, et al. Thyroid hormone and thyromimetics inhibit myelin and axonal degeneration and oligodendrocyte loss in EAE. J Neuroimmunol. 2021;15(352): 577468.

    Article  Google Scholar 

  147. Wooliscroft L, Altowaijri G, Hildebrand A, Samuels M, Oken B, Bourdette D, et al. Phase I randomized trial of liothyronine for remyelination in multiple sclerosis: a dose-ranging study with assessment of reliability of visual outcomes. Mult Scler Relat Disord. 2020;41: 102015.

    Article  PubMed  Google Scholar 

  148. Lee E-H, Kim S-M, Kim C-H, Pagire SH, Pagire HS, Chung HY, et al. Dopamine neuron induction and the neuroprotective effects of thyroid hormone derivatives. Sci Rep. 2019;9:13659.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Abikasinee Erampamoorthy for language revision.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NSG and NZ wrote the manuscript. PG and MR corrected the manuscript and approved the final version. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Nadia Sawicka-Gutaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawicka-Gutaj, N., Zawalna, N., Gut, P. et al. Relationship between thyroid hormones and central nervous system metabolism in physiological and pathological conditions. Pharmacol. Rep 74, 847–858 (2022). https://doi.org/10.1007/s43440-022-00377-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00377-w

Keywords

Navigation