Skip to main content
Log in

Acetaminophen treatment evokes anticontractile effects in rat aorta by blocking L-type calcium channels

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Acetaminophen (APAP) is the most widely used analgesic and antipyretic in the world. However, in high or continuous doses, it can cause serious side effects including blood pressure variability and cardiovascular injuries, which are barely explored. This study aimed to evaluate the acute effect of APAP treatment on vascular tone focused on the blocking of Ca2+ channels.

Methods

Rats were treated with APAP orally by gavage (500 mg/kg/single dose). After 12 h, the aorta was isolated for vascular reactivity studies in an isolated organ bath. Vascular contraction and relaxation were measured after different stimuli. Moreover, molecular docking studies were performed to evaluate the action of NAPQI (APAP metabolite) on L-type calcium channels.

Results

Phenylephrine-induced maximal vascular contraction was reduced in the APAP group (138.4 ± 9.2%) compared to the control group (172.2 ± 11.1%). APAP treatment significantly reduced contraction induced by Ca2+ influx stimulated with phenylephrine or KCl and reduced contraction mediated by Ca2+ released from the sarcoplasmic reticulum induced by caffeine. There was no difference in vascular relaxation induced by acetylcholine or sodium nitroprusside. Computational molecular docking demonstrated that NAPQI is capable of blocking L-type Ca2+ channels (Cav1.2), which would limit the influx of Ca2+.

Conclusion

These results suggest that APAP treatment causes an anticontractile effect in rat aorta, possibly by blocking the influx of Ca2+ through L-type channels (Cav1.2).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blieden M, Paramore LC, Shah DD, Ben-Joseph R. A perspective on the epidemiology of acetaminophen exposure and toxicity in the United States. Expert Rev Clin Pharmacol. 2014;3:341–8.

    Article  CAS  Google Scholar 

  2. Sheen C, Dillon J, Bateman D, Simpson K, Macdonald T. Paracetamol toxicity: epidemiology, prevention and costs to the health-care system. An Intern J Med. 2002;95:609–19.

    CAS  Google Scholar 

  3. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S. Paracetamol: new vistas of an old drug. CNS Drug Rev. 2006;12:250–75.

    Article  CAS  PubMed  Google Scholar 

  4. Mazaleuskaya I, Sangkuhl K, Thorn C, Fitzgerald G, Altman R, Klein T. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;2:416–26.

    Article  CAS  Google Scholar 

  5. Mcgill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev. 2020;52:472–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fleming I. Cytochrome p450 enzymes in vascular homeostasis. Circ Res. 2001;89:753–62.

    Article  CAS  PubMed  Google Scholar 

  7. Davidson DGD, Eastham W. Acute liver necrosis following overdose of paracetamol. Brit Med J. 1966;2:497–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan AT, Manson JE, Albert CM. Nonsteroidal antiinflammatory drugs, acetaminophen, and the risk of cardiovascular events. Circulation. 2006;113:1578–87.

    Article  CAS  PubMed  Google Scholar 

  9. Porto HKP, Grando MD, Ramalho LNZ, Valadares MC, Bendhack LM, Batista AC, et al. Exposure to acetaminophen impairs vasodilation, increases oxidative stress and changes arterial morphology of rats. Arch Toxicol. 2019;93:1955–64.

    Article  CAS  PubMed  Google Scholar 

  10. Ayres JC, Porto HKP, Andrade DML, Junior JB, Ribeiro MTL, Rocha ML, et al. Paracetamol-induced metabolic and cardiovascular changes are prevented by exercise training. Basic Clin Pharmacol Toxicol. 2020;127:516–24.

    Article  CAS  PubMed  Google Scholar 

  11. Forman JP, Rimm EB, Curhan G. Frequency of analgesic use and risk of hypertension among men. Arch Intern Med. 2007;167:394–9.

    Article  PubMed  Google Scholar 

  12. Glasser SP, Khodneva Y. Should acetaminophen be added to the list of antiinflammatory agents that are associated with cardiovascular events? Hypertension. 2015;65:991–2.

    Article  CAS  PubMed  Google Scholar 

  13. Turtle EJ, Dear JW, Webb DJ. A systematic review of the effect of paracetamol on blood pressure in hypertensive and non-hypertensive subjects. Brit J Clin Pharmacol. 2013;75:1396–405.

    Article  CAS  Google Scholar 

  14. McCrae JC, Morrison EE, MacIntyre IM, Dear JW, Webb DJ. Long-term adverse effects of paracetamol—a review. Brit J Clin Pharmacol. 2018;84:2218–30.

    Article  CAS  Google Scholar 

  15. Maxwell EN, Johnson B, Cammilleri J, Ferreira A. Intravenous acetaminophen-induced hypotension: a review of the current literature. Ann Pharmacother. 2019;53:1033–41.

    Article  CAS  PubMed  Google Scholar 

  16. Cantais A, Schnell D, Vincent F, Hammouda Z, Perinel S, Balichard S, et al. Acetaminophen-induced changes in systemic blood pressure in critically ill patients: results of a multicenter cohort study. Crit Care Med. 2016;44:2192–8.

    Article  CAS  PubMed  Google Scholar 

  17. Carafoli E. Intracellular calcium homeostasis. Annual Rev Biochem. 1987;56:395–433.

    Article  CAS  Google Scholar 

  18. Chen YY, Yu MF, Zhao XX, Shen J, Peng Y, Zhao P, et al. Paracetamol inhibits Ca2+ permeant ion channels and Ca2+ sensitization resulting in relaxation of precontracted airway smooth muscle. J Pharmacol Sci. 2020;142:60–8.

    Article  CAS  PubMed  Google Scholar 

  19. van der Horst J, Manville RW, Hayes K, Thomsen MB, Abbott GW, Jepps TA. Acetaminophen (paracetamol) metabolites induce vasodilation and hypotension by activating Kv7 potassium channels directly and indirectly. Arterioscler Thromb Vasc Biol. 2020;40(5):1207–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW, et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA. 2006;296:87–93.

    Article  CAS  PubMed  Google Scholar 

  21. Reagan-shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. Faseb J. 2008;22:659–61.

    Article  CAS  PubMed  Google Scholar 

  22. Tostes RC, Traub O, Bendhack LM, Webb RC. Sarcoplasmic reticulum Ca2+ uptake is not decreased in aorta from deoxycorticosterone acetate hypertensive rats: functional assessment with cyclopiazonic acid. Can J Physiol Pharmacol. 1995;73:1536–45.

    Article  CAS  PubMed  Google Scholar 

  23. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl NT. Conformer generation with omega: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model. 2010;50:572–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. am1-bcc model: ii. Parameterization and validation. J Comput Chem. 2002;23:1623–41.

    Article  CAS  PubMed  Google Scholar 

  25. Tikhonov DB, Zhorov BS. Structural model for dihydropyridine binding to l-type calcium channels. J Biol Chem. 2009;284:19006–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tikhonov DB, Zhorov BS. Molecular modeling of benzothiazepine binding in the l-type calcium channel. J Biol Chem. 2008;283:17594–604.

    Article  CAS  PubMed  Google Scholar 

  27. Dilmac N, Hilliard N, Hockerman HH. Molecular determinants of frequency dependence and Ca2+ potentiation of verapamil block in the pore region of Cav 1.2. Mol Pharmacol. 2004;66:1236–47.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Y, Huang G, Wu J, Wu Q, Gao S. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell. 2019;177:1495–506.

    Article  CAS  PubMed  Google Scholar 

  29. Kozakov D, Grove IE, Hall DR, Bohnuud T, Mottarella SE, Luo L, et al. The ftmap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc. 2015;10:733–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mcgann M. Hybrid docking performance on standardized datasets. J Comput Aided Mol Des. 2012;26:897–906.

    Article  CAS  PubMed  Google Scholar 

  31. Zhong S, Zhang Y, Xiu Z. Rescoring ligand docking poses. Curr Oppin Drug Discov Devel. 2010;13:326–34.

    CAS  Google Scholar 

  32. Hostovsky LT, Pan HJ, McNamara PJ, Belik J. Acetaminophen increases pulmonary and systemic vasomotor tone in the newborn rat. Pediatr Res. 2020;87(7):1171–6.

    Article  CAS  Google Scholar 

  33. Kirschner RI, Rozier CR, Smith LM, Jacobitz KL. Nomogram line crossing after acetaminophen combination product overdose. Clin Toxicol. 2016;54:40–6.

    Article  CAS  Google Scholar 

  34. Schoeffter P, Miller RC. Role of sodium-calcium exchange and effects of calcium entry blockers on endothelial-mediated responses in rat isolated aorta. Mol Pharmacol. 1986;30(1):53–7.

    CAS  PubMed  Google Scholar 

  35. Uchida H, Tanaka Y, Ishii K, Nakayama K. L-type Ca2+ channels are not involved in coronary endothelial Ca2+ influx mechanism responsible for endothelium-dependent relaxation. Res Commun Mol Pathol Pharmacol. 1999;104(2):127–44.

    CAS  PubMed  Google Scholar 

  36. Kochegarov A. Pharmacological modulators of voltage-gated calcium channels and their therapeutic application. Cell Calcium. 2003;33:145–62.

    Article  CAS  PubMed  Google Scholar 

  37. Krajčová A, Matoušek V, Duška F. Mechanism of paracetamol-induced hypotension in critically ill patients: a prospective observational cross-over study. Aust Crit Care. 2013;26:136–41.

    Article  PubMed  Google Scholar 

  38. Boyle M, Nicholson L, O’Brien M, Flynn GM, Collins DW, Walsh WR, et al. Paracetamol induced skin blood flow and blood pressure changes in febrile intensive care patients: an observational study. Aust Crit Care. 2010;23:208–14.

    Article  PubMed  Google Scholar 

  39. Lamont C, Gil W. Different roles of ryanodine receptors and inositol (1,4,5)-trisphosphate receptors in adrenergically stimulated contractions of small arteries. Am J Physiol Heart Circ Physiol. 2004;287:H617–25.

    Article  CAS  PubMed  Google Scholar 

  40. Boswell V, Spina D, Clive P. Phosphodiesterase inhibitors. Brit J Pharmacol. 2006;147:s252–7.

    Article  CAS  Google Scholar 

  41. Jayakody RL, Kappagoda CT, Senaratne MP, Sreeharan N. Absence of effect of calcium antagonists on endothelium-dependent relaxation in rabbit aorta. Br J Pharmacol. 1987;91(1):155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schneider J, El Kebir D, Chéreau C, Mercier J, Dall’Ava-Santucci J, Dinh-Xuan AT. Involvement of Na(+)/Ca(2+) exchanger in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol. 2002;283(2):H837–44.

    Article  CAS  PubMed  Google Scholar 

  43. Bondarenko A. Sodium-calcium exchanger contributes to membrane hyperpolarization of intact endothelial cells from rat aorta during acetylcholine stimulation. Br J Pharmacol. 2004;143(1):9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lillo AM, Gaete PS, Puebla M, Ardiles NM, Poblete I, Becerra A, et al. Critical contribution of Na+-Ca2+ exchanger to the Ca 2+-mediated vasodilation activated in endothelial cells of resistance arteries. FASEB J. 2018;32(4):2137–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is a part from the master's dissertation of author Mikaelle Costa Correia, research fellow of Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). Matheus L. Rocha is also a research fellow of Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). Bruno J. Neves is grateful to OpenEye Scientific Software Inc. and ChemAxon for providing him academic licenses for their software. We are also grateful to Dr. Boris Zhorov of the Department of Biochemistry and Biomedical Sciences of McMaster University for kindly providing the Cav1.2 homology models.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived and designed by MLR and MCC. The experiments were performed by MCC and ESAS. The data were analyzed by BJN and MLR. The manuscript was written by MLR and BJN and revised by all authors.

Corresponding author

Correspondence to Matheus L. Rocha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, M.C., Santos, E.S.A., Neves, B.J. et al. Acetaminophen treatment evokes anticontractile effects in rat aorta by blocking L-type calcium channels. Pharmacol. Rep 74, 493–502 (2022). https://doi.org/10.1007/s43440-022-00367-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-022-00367-y

Keywords

Navigation