Skip to main content

Advertisement

Log in

Vascular adhesion protein-1 and microvascular diabetic complications

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Vascular adhesion protein-1 (VAP-1) is a bifunctional protein that has the ability to catalyze the deamination of primary amines and is involved in the production of hydrogen peroxide, aldehydes, and advanced glycation end products (AGEs). VAP-1 is usually stored in intracellular vesicles of endothelial cells, smooth muscles, and adipocytes. It is responsible for leukocyte transmigration and adhesion. Overexpression of VAP-1 exacerbates oxidative stress and modulates a variety of inflammatory mediators linked with diabetic complications. Numerous studies have suggested the association of increased insulin levels with serum VAP-1 (sVAP-1). Preclinical research evidence suggests the increased activity of sVAP-1 in type 1 and 2 diabetes. Scientific reports on VAP-1 inhibitors have shown a reduction in severity in diabetic animal models. VAP-1 is a potential target of a therapeutically effective line of treatment for diabetes and diabetic complications such as nephropathy and retinopathy. The primary focus of this review is the role of VAP-1 in diabetes and its associated microvascular complications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACR:

Acrolein

AGE:

Advanced glycation end product

AOC/SSAO:

Amine oxidase/semicarbazide-sensitive amine oxidase

AOC:

Amine oxidase copper containing

AOC1:

Amine oxidase copper containing 1

AOC2:

Amine oxidase copper containing 2

AOC3:

Amine oxidase copper containing 3

AOC3KI:

AOC3 gene mutated

AOC3KO:

AOC3 gene knock-out

DM:

Diabetes mellitus

DR:

Diabetic retinopathy

ESRD:

End stage renal disease

FPG:

Fasting plasma glucose

GSH:

Glutathione

HEV:

High endothelial venules

ICAM-1:

Intercellular adhesion molecule-1

IDF:

International diabetes federation

IL-1β:

Interleukin 1-beta

IL-6:

Interleukin-6

LOX:

Lysyl oxidase

mAb:

Monoclonal antibody

MMP:

Matrix metalloproteinase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOD:

Non obese diabetic

PDR:

Proliferative diabetic retinopathy

sVAP-1:

Serum vascular adhesion protein-1

T2DM:

Type II diabetes mellitus

TNF-α:

Tumor necrosis factor-alpha

TPQ:

Topaquinone

VAP-1:

Vascular adhesion protein-1

VEGF:

Vascular endothelial growth factor

References

  1. Jalkanen S, Salmi M. A novel endothelial cell molecule mediating lymphocyte binding in humans. Behring Inst Mitt. 1993;92:36–43. PMID: 8250815

    CAS  Google Scholar 

  2. Merinen M, Irjala H, Salmi M, Jaakkola I, Hänninen A, Jalkanen S. Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am J Pathol. 2005;166:793–800. https://doi.org/10.1016/S0002-9440(10)62300-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D. Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta Proteins Proteom. 2003;1647:193–9. https://doi.org/10.1016/S1570-9639(03)00101-8.

    Article  CAS  Google Scholar 

  4. Kaitaniemi S, Elovaara H, Grön K, Kidron H, Liukkonen J, Salminen T, et al. The unique substrate specificity of human AOC2, a semicarbazide-sensitive amine oxidase. Cell Mol Life Sci. 2009;66:2743–57. https://doi.org/10.1007/s00018-009-0076-5.

    Article  CAS  PubMed  Google Scholar 

  5. Finney J, Moon HJ, Ronnebaum T, Lantz M, Mure M. Human copper-dependent amine oxidases. Arch Biochem Biophys. 2014;546:19–32. https://doi.org/10.1016/j.abb.2013.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jalkanen S, Salmi M. Cell surface monoamine oxidases enzymes in search of a function. EMBO. 2001;20:3893–901. https://doi.org/10.1093/emboj/20.15.3893

    Article  CAS  Google Scholar 

  7. Unzeta M, Hernàndez-Guillamon M, Sun P, Solé M. Ssao/vap-1 in cerebrovascular disorders: a potential therapeutic target for stroke and alzheimer’s disease. Int J Mol Sci. 2021;22:1–30. https://doi.org/10.3390/ijms22073365.

    Article  CAS  Google Scholar 

  8. Gharanei S, Fishwick K, Peter Durairaj R, Jin T, Siamantouras E, Liu KK, et al. Vascular adhesion protein-1 determines the cellular properties of endometrial pericytes. Front Cell Dev Biol. 2021;8:1–11. https://doi.org/10.3389/fcell.2020.621016.

    Article  Google Scholar 

  9. Smith DJ, Vainio PJ. Targeting vascular adhesion protein-1 to treat autoimmune and inflammatory diseases. Ann N Y Acad Sci. 2007;1110:382–8. https://doi.org/10.1196/annals.1423.040.

    Article  CAS  PubMed  Google Scholar 

  10. Aalto K, Autio A, Kiss EA, Elima K, Nymalm Y, Veres TZ, et al. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood. 2011;118(13):3725–33. https://doi.org/10.1182/blood-2010-09-311076.

    Article  CAS  PubMed  Google Scholar 

  11. Kivi E, Elima K, Aalto K, Nymalm Y, Auvinen K, Koivunen E, et al. Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate. Blood. 2009;114:5385–92. https://doi.org/10.1182/blood-2009-04-219253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Enrique-Tarancon G, Castan I, Morin N, Marti L, Abella A, Camps M, et al. Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J. 2000;350:171–80. https://doi.org/10.1042/0264-6021:3500171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koskinen K, Nevalainen S, Karikoski M, Hänninen A, Jalkanen S, Salmi M. VAP-1-deficient mice display defects in mucosal immunity and antimicrobial responses: implications for antiadhesive applications. J Immunol. 2007;179:6160–8. https://doi.org/10.4049/jimmunol.179.9.6160.

    Article  CAS  PubMed  Google Scholar 

  14. Toivonen R, Vanhatalo S, Hollmén M, Munukka E, Keskitalo A, Pietilä S, et al. Vascular adhesion protein 1 mediates gut microbial flagellin-induced inflammation, leukocyte infiltration, and hepatic steatosis. Sci. 2021;3:13. https://doi.org/10.3390/sci3010013.

    Article  Google Scholar 

  15. Ferjančič Š, Gil-Bernabé AM, Hill SA, Allen PD, Richardson P, Sparey T, et al. VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood. 2013;121:3289–97. https://doi.org/10.1182/blood-2012-08-449819.

    Article  CAS  PubMed  Google Scholar 

  16. Gerussi A, Carbone M, Invernizzi P. sVAP-1: a novel potential therapeutic target and marker for risk stratification in primary sclerosing cholangitis. J Lab Precis Med. 2017;2:72–72. https://doi.org/10.21037/jlpm.2017.09.04.

    Article  Google Scholar 

  17. Shepherd EL, Karim S, Newsome PN, Lalor PF. Inhibition of vascular adhesion protein-1 modifies hepatic steatosis in vitro and in vivo. World J Hepatol. 2020;12:931–48. https://doi.org/10.4254/wjh.v12.i11.931.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weston CJ, Shepherd EL, Claridge LC, Rantakari P, Curbishley SM, Tomlinson JW, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501–20. https://doi.org/10.1172/JCI73722.

    Article  PubMed  Google Scholar 

  19. Becchi S, Buson A, Foot J, Jarolimek W, Balleine BW. Inhibition of semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 reduces lipopolysaccharide-induced neuroinflammation. Br J Pharmacol. 2017;174:2302–17. https://doi.org/10.1111/bph.13832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jargaud V, Bour S, Tercé F, Collet X, Valet P, Bouloumié A, et al. Obesity of mice lacking VAP-1/SSAO by Aoc3 gene deletion is reproduced in mice expressing a mutated vascular adhesion protein-1 (VAP-1) devoid of amine oxidase activity. J Physiol Biochem. 2021;77:141–54. https://doi.org/10.1007/s13105-020-00756-y.

    Article  CAS  PubMed  Google Scholar 

  21. Silvola J, Virtanen H, Siitonen R, Hellberg S, Liljenbäck H, Metsälä O, et al. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci Rep. 2016;6:1–10. https://doi.org/10.1038/srep35089.

    Article  CAS  Google Scholar 

  22. Abella A, Garcia-Vicente S, Viguerie N, Ros-Baro A, Campus M, Palacin M, et al. Adipocytes release a soluble form of VAP-1/SSAO by a metalloprotease-dependent process and in a regulated manner. Diabetologia. 2004. https://doi.org/10.1007/s00125-004-1346-2.

    Article  PubMed  Google Scholar 

  23. Bono P, Jalkanen S, Salmi M. Mouse vascular adhesion protein 1 is a sialoglycoprotein with enzymatic activity and is induced in diabetic insulitis. Am J Pathol. 1999;155:1613–24. https://doi.org/10.1016/S0002-9440(10)65477-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li HY, Lin HA, Nien FJ, Wu VC, Der JY, Chang TJ, et al. Serum vascular adhesion protein-1 predicts end-stage renal disease in patients with type 2 diabetes. PLoS ONE. 2016;11:1–14. https://doi.org/10.1371/journal.pone.0147981.

    Article  CAS  Google Scholar 

  25. Li HY, Wei JN, Lin MS, Smith DJ, Vainio J, Lin CH, et al. Serum vascular adhesion protein-1 is increased in acute and chronic hyperglycemia. Clin Chim Acta. 2009;404:149–53. https://doi.org/10.1016/j.cca.2009.03.041.

    Article  CAS  PubMed  Google Scholar 

  26. Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25:1–20. https://doi.org/10.3390/molecules25081987.

    Article  CAS  Google Scholar 

  27. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res. 2018;2018:10–3. https://doi.org/10.1155/2018/3086167.

    Article  CAS  Google Scholar 

  28. Yraola F, Zorzano A, Albericio F, Royo M. Structure-activity relationships of SSAO/VAP-1 arylalkylamine-based substrates. ChemMedChem. 2009;4:495–503. https://doi.org/10.1002/cmdc.200800393.

    Article  CAS  PubMed  Google Scholar 

  29. Salmi M, Stolen C, Jousilahti P, Yegutkin GG. Insulin-regulated increase of soluble vascular adhesion protein-1 in diabetes. Am J Pathol. 2002;161:2255–62. https://doi.org/10.1016/S0002-9440(10)64501-4

    Article  CAS  Google Scholar 

  30. DincgezCakmak B, Dundar B, KetenciGencer F, Yildiz DE, Bayram F, Ozgen G, et al. Assessment of relationship between serum vascular adhesion protein-1 (VAP-1) and gestational diabetes mellitus. Biomarkers. 2019;24:750–6. https://doi.org/10.1080/1354750X.2019.1684562.

    Article  CAS  Google Scholar 

  31. Koc-Zorawska E, Malyszko J, Zbroch E, Malyszko J, Mysliwiec M. Vascular adhesion protein-1 and renalase in regard to diabetes in hemodialysis patients. Arch Med Sci. 2012;8:1048–52. https://doi.org/10.5114/aoms.2012.32413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuo CH, Wei JN, Yang CY, Ou HY, Wu HT, Fan KC, et al. Serum vascular adhesion protein-1 is up-regulated in hyperglycemia and is associated with incident diabetes negatively. Int J Obes. 2019;43:512–22. https://doi.org/10.1038/s41366-018-0172-4.

    Article  CAS  Google Scholar 

  33. Li HY, Der JY, Chang TJ, Wei JN, Lin MS, Lin CH, et al. Serum vascular adhesion protein-1 predicts 10-year cardiovascular and cancer mortality in individuals with type 2 diabetes. Diabetes. 2011;60:993–9. https://doi.org/10.2337/db10-0607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abella A, Marti L, Camps M, Claret M, Fernández-Alvarez J, Gomis R, et al. Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 activity exerts an antidiabetic action in Goto-Kakizaki rats. Diabetes. 2003;52:1004–13. https://doi.org/10.2337/diabetes.52.4.1004.

    Article  CAS  PubMed  Google Scholar 

  35. Tamura H, Miyamoto K, Kiryu J, Miyahara S, Katsuta H, Hirose F, et al. Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Investig Ophthalmol Vis Sci. 2005;46:1440–4. https://doi.org/10.1167/iovs.04-0905.

    Article  Google Scholar 

  36. Inoue T, Morita M, Tojo T, Nagashima A, Moritomo A, Miyake H. Novel 1H-imidazol-2-amine derivatives as potent and orally active vascular adhesion protein-1 (VAP-1) inhibitors for diabetic macular edema treatment. Bioorgan Med Chem. 2013;21:3873–81. https://doi.org/10.1016/j.bmc.2013.04.011.

    Article  CAS  Google Scholar 

  37. Murata M, Noda K, Fukuhara J, Kanda A, Kase S, Saito W, et al. Soluble vascular adhesion protein-1 accumulates in proliferative diabetic retinopathy. Investig Ophthalmol Vis Sci. 2012;53:4055–62. https://doi.org/10.1167/iovs.12-9857.

    Article  CAS  Google Scholar 

  38. Murata M, Noda K, Kawasaki A, Yoshida S, Dong Y, Saito M, et al. Soluble vascular adhesion protein-1 mediates spermine oxidation as semicarbazide-sensitive amine oxidase: possible role in proliferative diabetic retinopathy. Curr Eye Res. 2017;42:1674–83. https://doi.org/10.1080/02713683.2017.1359847.

    Article  CAS  PubMed  Google Scholar 

  39. Matsuda T, Noda K, Murata M, Kawasaki A, Kanda A, Mashima Y, et al. Vascular adhesion protein-1 blockade suppresses ocular inflammation after retinal laser photocoagulation in mice. Investig Ophthalmol Vis Sci. 2017;58:3254–61. https://doi.org/10.1167/iovs.17-21555.

    Article  CAS  Google Scholar 

  40. Abu El-Asrar AM, Mohammad G, Nawaz MI, Siddiquei MM, Van Den Eynde K, Mousa A, et al. Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS ONE. 2013;8:1–11. https://doi.org/10.1371/journal.pone.0085857.

    Article  CAS  Google Scholar 

  41. Noda K, Nakao S, Zandi S, Engelstädter V, Mashima Y, Hafezi-Moghadam A. Vascular adhesion protein-1 regulates leukocyte transmigration rate in the retina during diabetes. Exp Eye Res. 2009;89:774–81. https://doi.org/10.1016/j.exer.2009.07.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tékus V, Horváth ÁI, Csekő K, Szabadfi K, Kovács-Valasek A, Dányádi B, et al. Protective effects of the novel amine-oxidase inhibitor multi-target drug SZV 1287 on streptozotocin-induced beta cell damage and diabetic complications in rats. Biomed Pharmacother. 2021. https://doi.org/10.1016/j.biopha.2020.111105.

    Article  PubMed  Google Scholar 

  43. Yu PH, Zuo DM. Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: implications for advanced glycation and diabetic complications. Diabetologia. 1997;40:1243–50. https://doi.org/10.1007/s001250050816.

    Article  CAS  PubMed  Google Scholar 

  44. Hoefman S, Snelder N, van Noort M, Garcia-Hernandez A, Onkels H, Larsson TE, et al. Mechanism-based modeling of the effect of a novel inhibitor of vascular adhesion protein-1 on albuminuria and renal function markers in patients with diabetic kidney disease. J Pharmacokinet Pharmacodyn. 2021;48:21–38. https://doi.org/10.1007/s10928-020-09716-x.

    Article  CAS  PubMed  Google Scholar 

  45. Wong M, Saad S, Zhang J, Gross S, Jarolimek W, Schilter H, et al. Semicarbazide-sensitive amine oxidase (SSAO) inhibition ameliorates kidney fibrosis in a unilateral ureteral obstruction murine model. Am J Physiol Renal Physiol. 2014;307(8):F908–16. https://doi.org/10.1152/ajprenal.00698.2013.

    Article  CAS  PubMed  Google Scholar 

  46. Wong MYW, Saad S, Wong MG, Stangenberg S, Jarolimek W, Schilter H, et al. Semicarbazide-sensitive amine oxidase inhibition ameliorates albuminuria and glomerulosclerosis but does not improve tubulointerstitial fibrosis in diabetic nephropathy. PLoS ONE. 2020;15:1–20. https://doi.org/10.1371/journal.pone.0234617.

    Article  CAS  Google Scholar 

Download references

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The article was conceptualized by YK and AS. AS wrote the manuscript. YK and AS finalized the manuscript.

Corresponding author

Correspondence to Yogesh A. Kulkarni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.D., Kulkarni, Y.A. Vascular adhesion protein-1 and microvascular diabetic complications. Pharmacol. Rep 74, 40–46 (2022). https://doi.org/10.1007/s43440-021-00343-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00343-y

Keywords

Navigation