Skip to main content

Advertisement

Log in

Integrative opioid-GABAergic neuronal mechanisms regulating dopamine efflux in the nucleus accumbens of freely moving animals

  • Special Issue: Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

The nucleus accumbens (NAc) is a terminal region of mesocorticolimbic dopamine (DA) neuronal projections from the ventral tegmental area. Accumbal DA release is integrated by afferents from other brain regions and by interneurons, which involve a diversity of neurotransmitters and neuropeptides. These integrative processes, implicated in the pathobiology of neuropsychiatric disorders, are mediated via receptor subtypes whose relative roles in the regulation of accumbal DA release are poorly understood. Such complex interactions are exemplified by how selective activation of opioid receptor subtypes enhances accumbal DA efflux in a manner that is modulated by changes in neural activity through GABA receptor subtypes. This review delineates the roles of GABAA and GABAB receptors in GABAergic neural mechanisms in NAc that participate in delta- and mu-opioid receptor-mediated increases in accumbal DA efflux in freely moving rats, focusing on studies using in vivo brain microdialysis. First, we consider how endogenous GABA exerts inhibition of accumbal DA efflux through GABA receptor subtypes. We also consider possible intra-neuronal source of the endogenous GABA that inhibits accumbal DA efflux. As NAc contains GABAergic neurons that express delta- or mu-opioid receptors, inhibition of accumbal GABAergic neurons is a candidate for mediating delta- or mu-opioid receptor-mediated increases in accumbal DA efflux. Therefore, we provide a detailed analysis of the effects of GABA receptor subtype ligands on delta- and mu-opioid receptor-mediated accumbal DA efflux. Finally, we present an integrative model to explain the mechanisms of interaction among delta- and mu-opioid receptors, GABAergic neurons and DAergic neurons in NAc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Allylglycine:

l-allylglycine

DA:

Dopamine

GAD:

Glutamic acid decarboxylase

NAc:

Nucleus accumbens

VTA:

Ventral tegmental area

References

  1. Di Chiara G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res. 2002;137:75–114.

    Article  PubMed  Google Scholar 

  2. Nicola SM. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology. 2007;191:521–50.

    Article  CAS  PubMed  Google Scholar 

  3. Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol. 2015;66:25–52.

    Article  PubMed  Google Scholar 

  4. Castro DC, Bruchas MR. A motivational and neuropeptidergic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron. 2019;102:529–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, et al. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology. 2004;47(Suppl 1):227–41.

    Article  PubMed  Google Scholar 

  6. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koob GF. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol Psychiatry. 2020;87:44–53.

    Article  CAS  PubMed  Google Scholar 

  8. Okutsu H, Watanabe S, Takahashi I, Aono Y, Saigusa T, Koshikawa N, et al. Endomorphin-2 and endomorphin-1 promote the extracellular amount of accumbal dopamine via nonopioid and mu-opioid receptors, respectively. Neuropsychopharmacology. 2006;31:375–83.

    Article  CAS  PubMed  Google Scholar 

  9. Saigusa T, Aono Y, Waddington JL. Mechanisms underlying δ- and μ-opioid receptor agonist-induced increases in extracellular dopamine level in the nucleus accumbens of freely moving rats. J Oral Sci. 2017;59:195–200.

    Article  CAS  PubMed  Google Scholar 

  10. Aono Y, Saigusa T, Mizoguchi N, Iwakami T, Takada K, Gionhaku N, et al. Role of GABAA receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol. 2008;580:87–94.

    Article  CAS  PubMed  Google Scholar 

  11. Aono Y, Kiguchi Y, Watanabe Y, Waddington JL, Saigusa T. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol. 2017;815:18–25.

    Article  CAS  PubMed  Google Scholar 

  12. Saigusa T, Aono Y, Mizoguchi N, Iwakami T, Takada K, Oi Y, et al. Role of GABAB receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol. 2008;581:276–82.

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe Y, Aono Y, Komiya M, Waddington JL, Saigusa T. Stimulation of accumbal GABA<sub>B</sub> receptors inhibits delta1- and delta2-opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol. 2018;837:88–95.

    Article  CAS  PubMed  Google Scholar 

  14. Svingos AL, Clarke CL, Pickel VM. Cellular sites for activation of δ-opioid receptors in the rat nucleus accumbens shell: relationship with Met5-enkephalin. J Neurosci. 1998;18:1923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM. Mu-opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J Neurosci. 1997;17:2585–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson TG, Beart PM. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens. Brain Res Bull. 1988;20:467–71.

    Article  CAS  PubMed  Google Scholar 

  17. Blaha CD, Yang CR, Floresco SB, Barr AM, Phillips AG. Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci. 1997;9:902–11.

    Article  CAS  PubMed  Google Scholar 

  18. Christie MJ, James LB, Beart PM. An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat. J Neurochem. 1985;45:477–82.

    Article  CAS  PubMed  Google Scholar 

  19. Waddington JL, Cross AJ. Neurochemical changes following kainic acid lesions of the nucleus accumbens: implications for a GABAergic accumbal-ventral tegmental pathway. Life Sci. 1978;22:1011–4.

    Article  CAS  PubMed  Google Scholar 

  20. Berendse HW, Groenewegen HJ, Lohman AH. Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat. J Neurosci. 1992;12:2079–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zahm DS, Heimer L. Specificity in the efferent projections of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell. J Comp Neurol. 1993;8:220–32.

    Article  Google Scholar 

  22. Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, et al. Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol. 2001;433:526–49.

    Article  CAS  PubMed  Google Scholar 

  23. Chang HT, Kitai ST. Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Res. 1985;347:112–6.

    Article  CAS  PubMed  Google Scholar 

  24. Bolam JP, Clarke DJ, Smith AD, Somogyi P. A type of aspiny neuron in the rat neostriatum accumulates [3H]gamma-aminobutyric acid: combination of Golgi-staining, autoradiography, and electron microscopy. J Comp Neurol. 1983;213:121–34.

    Article  CAS  PubMed  Google Scholar 

  25. Kita H, Kitai ST. Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res. 1988;447:346–52.

    Article  CAS  PubMed  Google Scholar 

  26. Xi ZX, Ramamoorthy S, Shen H, Lake R, Samuvel DJ, Kalivas PW. GABA transmission in the nucleus accumbens is altered after withdrawal from repeated cocaine. J Neurosci. 2003;23:3498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABAB receptors. Physiol Rev. 2004;84:835–67.

    Article  CAS  PubMed  Google Scholar 

  28. Davis LL, Trivedi M, Choate A, Kramer GL, Petty F. Growth hormone response to the GABAB agonist baclofen in major depressive disorder. Psychoneuroendocrinology. 1997;22:129–40.

    Article  CAS  PubMed  Google Scholar 

  29. Mouginot D, Kombian SB, Pittman QJ. Activation of presynaptic GABAB receptors inhibits evoked IPSCs in rat magnocellular neurons in vitro. J Neurophysiol. 1998;79:1508–17.

    Article  CAS  PubMed  Google Scholar 

  30. Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immunocytochemical localization of GABAB receptors in the rat central nervous system. J Comp Neurol. 1999;405:299–321.

    Article  CAS  PubMed  Google Scholar 

  31. Doherty M, Gratton A. Differential involvement of ventral tegmental GABA(A) and GABA(B) receptors in the regulation of the nucleus accumbens dopamine response to stress. Brain Res. 2007;1150:62–8.

    Article  CAS  PubMed  Google Scholar 

  32. Westerink BH, Kwint HF, deVries JB. The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J Neurosci. 1996;16:2605–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ikemoto S, Kohl RR, McBride WJ. GABA(A) receptor blockade in the anterior ventral tegmental area increases extracellular levels of dopamine in the nucleus accumbens of rats. J Neurochem. 1997;69:137–43.

    Article  CAS  PubMed  Google Scholar 

  34. Pycock CJ, Horton RW. Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens. J Neural Trans. 1979;45:17–33.

    Article  CAS  Google Scholar 

  35. Wong LS, Eshel G, Dreher J, Ong J, Jackson DM. Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens. Pharm Biochem Behav. 1991;38:829–35.

    Article  CAS  Google Scholar 

  36. Scheel-Krüger J, Arnt J, Magelund G, Olianas M, Przewlocka B, Christensen AV. Behavioural functions of GABA in basal ganglia and limbic system. Brain Res Bull. 1980;5(Suppl 2):261–7.

    Article  Google Scholar 

  37. Rahman S, McBride WJ. Involvement of GABA and cholinergic receptors in the nucleus accumbens on feedback control of somatodendritic dopamine release in the ventral tegmental area. J Neurochem. 2002;80:646–54.

    Article  CAS  PubMed  Google Scholar 

  38. Yan Q. Focal bicuculline increases extracellular dopamine concentration in the nucleus accumbens of freely moving rats as measured by in vivo microdialysis. Eur J Pharmacol. 1999;385:7–13.

    Article  CAS  PubMed  Google Scholar 

  39. Ferraro L, Tanganelli S, O’Connor WT, Antonelli T, Rambert F, Fuxe K. The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. Eur J Pharmacol. 1996;306:33–9.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida M, Yokoo H, Nakahara K, Tomita M, Hamada N, Ishikawa M, et al. Local muscimol disinhibits mesolimbic dopaminergic activity as examined by brain microdialysis and Fos immunohistochemistry. Brain Res. 1997;767:356–60.

    Article  CAS  PubMed  Google Scholar 

  41. Pijnenburg AJ, van Rossum JM. Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J Pharm Pharmacol. 1973;25:1003–5.

    Article  CAS  PubMed  Google Scholar 

  42. Ashby CR Jr, Rohatgi R, Ngosuwan J, Borda T, Gerasimov MR, Morgan AE, et al. Implication of the GABAB receptor in gamma vinyl-GABA’s inhibition of cocaine-induced increases in nucleus accumbens dopamine. Synapse. 1999;31:151–3.

    Article  CAS  PubMed  Google Scholar 

  43. Fadda P, Scherma M, Fresu A, Collu M, Fratta W. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse. 2003;50:1–6.

    Article  CAS  PubMed  Google Scholar 

  44. Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991;16:215–26.

    Article  CAS  PubMed  Google Scholar 

  45. Buddhala C, Hsu CC, Wu JY. A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int. 2009;55:9–12.

    Article  CAS  PubMed  Google Scholar 

  46. Martin DL, Rimvall K. Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem. 1993;60:395–407.

    Article  CAS  PubMed  Google Scholar 

  47. Waagepetersen HS, Sonnewald U, Schousboe A. The GABA paradox: multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J Neurochem. 1999;73:1335–42.

    Article  CAS  PubMed  Google Scholar 

  48. Walls AB, Nilsen LH, Eyjolfsson EM, Vestergaard HT, Hansen SL, Schousboe A, et al. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. J Neurochem. 2010;115:1398–408.

    Article  CAS  PubMed  Google Scholar 

  49. Bolam JP, Powell JF, Wu JY, Smith AD. Glutamate decarboylase-immunoreactive structures in the rat striatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry. J Comp Neurol. 1985;237:1–20.

    Article  CAS  PubMed  Google Scholar 

  50. Cowan RL, Wilson CJ, Emson PC, Heizmann CW. Parvalbumin-containing GABAergic interneurons in the rat neostriatum. J Comp Neurol. 1990;302:197–205.

    Article  CAS  PubMed  Google Scholar 

  51. Oertel WH, Mugnaini E. Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci Lett. 1984;47:233–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lee M, Schwab C, McGeer PL. Astrocytes are GABAergic cells that modulate microglial activity. Glia. 2011;59:152–65.

    Article  PubMed  Google Scholar 

  53. González-Hernández T, Barroso-Chinea P, Acevedo A, Salido E, Rodríguez M. Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. Eur J Neurosci. 2001;13:57–67.

    PubMed  Google Scholar 

  54. Saigusa T, Aono Y, Sekino R, Uchida T, Takada K, Oi Y, Koshikawa N, Cools AR. In vivo neurochemical evidence that newly synthesised GABA activates GABA(B), but not GABA(A), receptors on dopaminergic nerve endings in the nucleus accumbens of freely moving rats. Neuropharmacology. 2012;62:907–13.

    Article  CAS  PubMed  Google Scholar 

  55. Attwell D, Barbour B, Szatkowski M. Nonvesicular release of neurotransmitter. Neuron. 1993;11:401–7.

    Article  CAS  PubMed  Google Scholar 

  56. Rossi DJ, Hamann M, Attwell D. Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol. 2003;548:97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wall MJ, Usowicz MM. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci. 1997;9:533–48.

    Article  CAS  PubMed  Google Scholar 

  58. Richerson GB, Wu YM. Dynamic equilibrium of neurotransmitter transportrers; not just for reuptake anymore. J Neurophysiol. 2003;90:1363–74.

    Article  CAS  PubMed  Google Scholar 

  59. Kozlov AS, Angulo MC, Audinat E, Charpak S. Target cell-specific modulation of neuronal activity by atrocytes. Proc Natl Acad Sci USA. 2006;103:10058–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL. Persistent activation of GABAA receptor/Cl- channels by astrocyte-derived GABA in cultured embryonic rat hippocampal neurons. J Neurophysiol. 2000;84:1392–403.

    Article  CAS  PubMed  Google Scholar 

  61. Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, et al. The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci. 1998;18:9733–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin H, Wu H, Osterhaus G, Wei J, Davis K, Sha D, et al. Demonstration of functional coupling between gamma-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc Natl Acad Sci USA. 2003;100:4293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walls AB, Eyjolfsson EM, Smeland OB, Nilsen LH, Schousboe I, Schousboe A, et al. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab. 2011;31:494–503.

    Article  CAS  PubMed  Google Scholar 

  64. Gasnier B. The loading of neurotransmitters into synaptic vesicles. Biochimie. 2000;82:327–37.

    Article  CAS  PubMed  Google Scholar 

  65. Galvan A, Hu X, Smith Y, Wichmann T. Localization and pharmacological modulation of GABA-B receptors in the globus pallidus of parkinsonian monkeys. Exp Neurol. 2011;229:429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tepper JM, Lee CR. GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res. 2007;160:189–208.

    Article  CAS  PubMed  Google Scholar 

  67. Azzam AAH, McDonald J, Lambert DG. Hot topics in opioid pharmacology: mixed and biased opioids. Br J Anaesth. 2019;122:e136–45.

    Article  CAS  PubMed  Google Scholar 

  68. Narita M, Funada M, Suzuki T. Regulations of opioid dependence by opioid receptor types. Pharmacol Ther. 2001;89:1–15.

    Article  CAS  PubMed  Google Scholar 

  69. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci. 2015;38:217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoshida Y, Koide S, Hirose N, Takada K, Tomiyama K, Koshikawa N, et al. Fentanyl increases dopamine release in rat nucleus accumbens: involvement of mesolimbic mu- and delta-2-opioid receptors. Neuroscience. 1999;92:1357–65.

    Article  CAS  PubMed  Google Scholar 

  71. Fusa K, Takahashi I, Watanabe S, Aono Y, Ikeda H, Saigusa T, et al. The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals. Neuroscience. 2005;130:745–55.

    Article  CAS  PubMed  Google Scholar 

  72. Hirose N, Murakawa K, Takada K, Oi Y, Suzuki T, Nagase H, et al. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Neuroscience. 2005;135:213–25.

    Article  CAS  PubMed  Google Scholar 

  73. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci. 1987;7:2445–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gouarderes C, Tellez S, Tafani JAM, Zajac J-M. Quantitative autoradiographic mapping of delta-opioid receptors in the rat central nervous system using [125I][D-Ala2]deltorphin-I. Synapse. 1993;13:231–40.

    Article  CAS  PubMed  Google Scholar 

  75. Evans CJ, Keith DE, Morrison H, Magendzo K, Edwards RH. Cloning of a delta opioid receptor by functional expression. Science. 1992;258:1952–5.

    Article  CAS  PubMed  Google Scholar 

  76. Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth. 2011;107:8–18.

    Article  CAS  PubMed  Google Scholar 

  77. Pasternak GW, Wood PJ. Multiple mu opiate receptors. Life Sci. 1986;38:1889–98.

    Article  CAS  PubMed  Google Scholar 

  78. Saigusa T, Fusa K, Okutsu H, Koshikawa N. Monitoring of extracellular dopamine levels in the dorsal striatum and the nucleus accumbens with 5-minute on-line microdialysis in freely moving rats. J Oral Sci. 2001;43:129–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Grant-in-Aid for Scientific Research (C) (#17K11858 to TS; #18K09777 to YA) from the Ministry of Education, Culture, Sports, Science and Technology, Japan; The Private University Research Branding Project from MEXT, Japan; Nihon University President's Grant for Specified Interdisciplinary Research: Grant from The Nakatomi Foundation, Japan (TS, JLW); Grants from Suzuki Fund, Nihon University School of Dentistry at Matsudo; Grants from Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo (TS, YA).

Author information

Authors and Affiliations

Authors

Contributions

TS and JLW reviewed the recent literature and drafted the review. TS, YA and JLW were involved in many of the microdialysis studies that are included in the review. All authors contributed to and approved the final manuscript for submission.

Corresponding author

Correspondence to Tadashi Saigusa.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saigusa, T., Aono, Y. & Waddington, J.L. Integrative opioid-GABAergic neuronal mechanisms regulating dopamine efflux in the nucleus accumbens of freely moving animals. Pharmacol. Rep 73, 971–983 (2021). https://doi.org/10.1007/s43440-021-00249-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00249-9

Keywords

Navigation