Skip to main content
Log in

Genetic modification of Escherichia coli to improve 1,2,4-butanetriol production from cellulose hydrolysate

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The presence of various furan aldehydes in cellulose hydrolysate affects the fermentation of 1,2,4-butanetriol (BT) in a similar way. In this study, furfural was used as a representative for the modification of BT-producing E. coli for tolerance. The engineered Escherichia coli harboring the recombinant BT pathway had decreased the biomass by 58% and the BT titer by 52% in the presence of 0.4 g/L furfural. To improve the tolerance of the strain and the efficiency of BT synthesis in the hydrolysate, seven furfural tolerance genes, ucpA, fucO, groESL, lpcA, pncB, nadD, and nadE were introduced into the BT-producing E. coli. All these genes differentially improved the furfural tolerance performance of the cells. Overexpression of these tolerance genes reduces the accumulation of reactive oxygen species and promotes glycolysis. Oxidoreductase UcpA was the best candidate for improving cell growth. UcpA also increased the activities of Xdh and YqhD and the RNA levels of YjhG and KivD, leading to a 32% increase in BT yield per biomass and the best BT titer of 14.4 g/L in the presence of 0.4 g/L furfural. In the shaker and 5 L fermenter, the BT titer reached 5.2 g/L and 11.2 g/L, respectively, by using corn cob cellulose as substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data and materials generated or analyzed in this study are included in this published article and its supplementary information files.

References

  1. Lu X, He S, Zong H, Song J, Chen W, Zhuge B. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins. World J Microbiol Biotechnol. 2016;32:149. https://doi.org/10.1007/s11274-016-2085-5.

    Article  CAS  PubMed  Google Scholar 

  2. Jing P, Cao X, Lu X, Zong H, Zhuge B. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production. J Biosci Bioeng. 2018;126:547–52. https://doi.org/10.1016/j.jbiosc.2018.05.019.

    Article  CAS  PubMed  Google Scholar 

  3. Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol. 2008;1:497–506. https://doi.org/10.1111/j.1751-7915.2008.00050.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glebes TY, Sandoval NR, Reeder PJ, Schilling KD, Zhang M, Gill RT. Genome-wide mapping of furfural tolerance genes in Escherichia coli. PLoS ONE. 2014;9:e87540. https://doi.org/10.1371/journal.pone.0087540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2010;82:340–9.

    Article  Google Scholar 

  6. Zhao M, Shi D, Lu X, Zong H, Zhuge B, Ji H. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant. Bioresour Technol. 2019;273:634–40. https://doi.org/10.1016/j.biortech.2018.11.053.

    Article  CAS  PubMed  Google Scholar 

  7. Gutiérrez T, Ingram LO, Preston JF. Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol. 2006;121:154–64. https://doi.org/10.1016/j.jbiotec.2005.07.003.

    Article  CAS  PubMed  Google Scholar 

  8. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3:2. https://doi.org/10.1186/1754-6834-3-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines AP, et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell. 2005;122:209–20. https://doi.org/10.1016/j.cell.2005.05.028.

    Article  CAS  PubMed  Google Scholar 

  10. Zingaro KA, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng. 2013;15:196–205. https://doi.org/10.1016/j.ymben.2012.07.009.

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, et al. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci USA. 2013;110:4021–6. https://doi.org/10.1073/pnas.1217958110.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fralick JA, Burns-Keliher LL. Additive effect of tolC and rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coli K-12. J Bacteriol. 1994;176:6404–6. https://doi.org/10.1128/jb.176.20.6404-6406.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schnaitman CA, Klena JD. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev. 1993;57:655–82. https://doi.org/10.1128/mr.57.3.655-682.1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song H-S, Jeon J-M, Kim H-J, Bhatia SK, Sathiyanarayanan G, Kim J, et al. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour Technol. 2017;245:1430–5. https://doi.org/10.1016/j.biortech.2017.05.197.

    Article  CAS  PubMed  Google Scholar 

  15. Akinterinwa O, Khankal R, Cirino PC. Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol. 2008;19:461–7. https://doi.org/10.1016/j.copbio.2008.08.002.

    Article  CAS  PubMed  Google Scholar 

  16. Candido JP, Claro EMT, de Paula CBC, Shimizu FL, de OliveriaLeite DAN, Brienzo M, et al. Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World J Microbiol Biotechnol. 2020;36:43. https://doi.org/10.1007/s11274-020-02820-7.

    Article  CAS  PubMed  Google Scholar 

  17. Purwadi R, Niklasson C, Taherzadeh MJ. Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J Biotechnol. 2004;114:187–98. https://doi.org/10.1016/j.jbiotec.2004.07.006.

    Article  CAS  PubMed  Google Scholar 

  18. Surbhi G, Prashant M. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl Microbiol Biotechnol. 2018;102:1955–67.

    Article  Google Scholar 

  19. Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung W-J. High yield production of d-xylonic acid from d-xylose using engineered Escherichia coli. Bioresour Technol. 2012;115:244–8. https://doi.org/10.1016/j.biortech.2011.08.065.

    Article  CAS  PubMed  Google Scholar 

  20. Geddes RD, Wang X, Yomano LP, Miller EN, Zheng H, Shanmugam KT, et al. Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol. 2014;80:5955–64.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Miller EN, Yomano LP, Shanmugam KT, Ingram LO. Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene. Appl Environ Microbiol. 2012;78:2452–5. https://doi.org/10.1128/AEM.07783-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng H, Wang X, Yomano LP, Geddes RD, Shanmugam KT, Ingram LO. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions. Appl Environ Microbiol. 2013;79:3202–8. https://doi.org/10.1128/AEM.00149-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomas CA, Welker NE, Papoutsakis ET. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol. 2003;69:4951–65. https://doi.org/10.1128/aem.69.8.4951-4965.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Desmond C, Fitzgerald GF, Stanton C, Ross RP. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol. 2004;70:5929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loui C, Chang AC, Lu S. Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress. BMC Microbiol. 2009;9:183–180.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Xu N, Hu S, Yang J, Gao Q, Xu S, et al. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. Bioresour Technol. 2018;250:406–12. https://doi.org/10.1016/j.biortech.2017.11.062.

    Article  CAS  PubMed  Google Scholar 

  27. Gao Q, Wang X, Hu S, Xu N, Jiang M, Ma C, et al. High-yield production of D-1,2,4-butanetriol from lignocellulose-derived xylose by using a synthetic enzyme cascade in a cell-free system. J Biotechnol. 2019;292:76–83. https://doi.org/10.1016/j.jbiotec.2019.01.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

XL and BZ conceived the experiments. DS and BZ designed and performed the experiments and analyzed the data. DS and XL wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bin Zhuge.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, D., Wang, S., Zong, H. et al. Genetic modification of Escherichia coli to improve 1,2,4-butanetriol production from cellulose hydrolysate. Syst Microbiol and Biomanuf 4, 801–809 (2024). https://doi.org/10.1007/s43393-023-00177-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00177-0

Keywords

Navigation