Skip to main content
Log in

Improving D-carbamoylase thermostability through salt bridge engineering for efficient D-p-hydroxyphenylglycine production

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

D-p-hydroxyphenylglycine (D-HPG) is an important intermediate in the pharmaceutical industry, and it is commonly synthesized by cascading D-hydantoinase (DHase) and D-carbamoylase (DCase). In this study, the stability of DCase was identified as the main problem that limits its application. Therefore, the complexed structure of AkDCase (DCase from the Agrobacterium sp. strain KNK712) with the substrate N-carbamoyl-D-p-hydroxyphenylglycine (CpHPG) (with 2.52 Å resolution) and catalytic mechanism were resolved. Based on the catalytic mechanism and electrostatic stabilization, salt bridge engineering was adopted to improve AkDCase thermostability. The best variant, AkDCaseD30A, increased the Tm by 2.91 °C and half-life (t1/2) at 40 and 60 °C by 18.43 h and 23.21 min, respectively. After AkDCaseD30A was assembled with GsDHase (DHase from Geobacillus stearothermophilus SD-1) in a single Escherichia coli cell, the recombinant strain could produce 29.53 g/L D-HPG within 12 h, with a 97% conversion and a 2.46 g/(L·h) space–time yield (STY). The titer of D-HPG increased by 40.55% compared to the E. coli cell harboring pETduet-1-AkDCase- GsDHase. The recombinant strain could be used for two cycles. Our research provides a basis for the industrial production of D-HPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Liu Y, Xie NZ, Yu B. De Novo biosynthesis of D-p-Hydroxyphenylglycine by a designed cofactor self-sufficient route and co-culture strategy. ACS Synth Biol. 2022;11(3):1361–72.

    Article  CAS  PubMed  Google Scholar 

  2. Pan X, Xu L, Li YR, Wu SH, Wu Y, et al. Strategies to improve the biosynthesis of beta-lactam antibiotics by penicillin G acylase: progress and prospects. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.936487.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Al Toma RS, Brieke C, Cryle MJ, Sussmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep. 2015;32(8):1207–35.

    Article  CAS  PubMed  Google Scholar 

  4. Chen SY, Chien YW, Chao YP. In vivo immobilization of D-hydantoinase in Escherichia coli. J Biosci Bioeng. 2014;118(1):78–81.

    Article  CAS  PubMed  Google Scholar 

  5. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chem Rev. 2022;122(3):3637–710.

    Article  CAS  PubMed  Google Scholar 

  6. Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev. 2018;47(4):1516–61.

    Article  CAS  PubMed  Google Scholar 

  7. Wu SK, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed. 2021;60(1):88–119.

    Article  CAS  Google Scholar 

  8. Tan X, Zhang S, Song W, Liu J, Gao C, et al. A multi-enzyme cascade for efficient production of D-p-hydroxyphenylglycine from L-tyrosine. Bioresour Bioprocess. 2021. https://doi.org/10.1186/s40643-021-00394-2.

    Article  Google Scholar 

  9. Liu Y, Zhu L, Qi W, Yu B. Biocatalytic production of D-p-hydroxyphenylglycine by optimizing protein expression and cell wall engineering in Escherichia coli. Appl Microbiol Biotechnol. 2019;103(21–22):8839–51.

    Article  CAS  PubMed  Google Scholar 

  10. Olivieri R, Fascetti E, Angelini L, Degen L. Enzymatic conversion of N- carbamoyl-D-amino acids to D-amino acids. Enzyme Microb Technol. 1979;1(3):201–4.

    Article  CAS  Google Scholar 

  11. Ikenaka Y, Nanba H, Yamada Y, Yajima K, Takano M, et al. Screening, characterization, and cloning of the gene for N-carbamyl-D-amino acid amidohydrolase from thermotolerant soil bacteria. Biosci Biotechnol Biochem. 1998;62(5):882–6.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang D, Zhu F, Fan W, Tao R, Yu H, et al. Gradually accumulating beneficial mutations to improve the thermostability of N-carbamoyl-D-amino acid amidohydrolase by step-wise evolution. Appl Microbiol Biotechnol. 2011;90(4):1361–71.

    Article  PubMed  Google Scholar 

  13. Schwarz J, Rosenthal K, Snajdrova R, Kittelmann M, Lutz S. The development of biocatalysis as a tool for drug discovery. Chimia. 2020;74(5):368–77.

    Article  CAS  PubMed  Google Scholar 

  14. Chiu WC, You JY, Liu JS, Hsu SK, Hsu WH, et al. Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase. J Mol Biol. 2006;359(3):741–53.

    Article  CAS  PubMed  Google Scholar 

  15. Oh KH, Nam SH, Kim HS. Improvement of oxidative and thermostability of N-carbamyl-D-amino acid amidohydrolase by directed evolution. Protein Eng. 2002;15(8):689–95.

    Article  CAS  PubMed  Google Scholar 

  16. Park JH, Oh KH, Lee DC, Kim HS. Modeling and kinetic analysis of the reaction system using whole cells with separately and co-expressed D-hydantoinase and N-carbamoylase. Biotechnol Bioeng. 2002;78(7):779–93.

    Article  CAS  PubMed  Google Scholar 

  17. Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr Sect D: Biol Crystallogr. 2010;66:133–44.

    Article  ADS  CAS  Google Scholar 

  18. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D: Biol Crystallogr. 2004;60:2126–32.

    Article  ADS  Google Scholar 

  19. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D: Biol Crystallogr. 2011;67:355–67.

    Article  ADS  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 16 Rev. A.03 Vol. Wallingford, CT; 2016

  21. Jakalian A, Bush BL, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC Model I Method J Comput Chem. 2000;21(2):132–46.

    Article  CAS  Google Scholar 

  22. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23(16):1623–41.

    Article  CAS  PubMed  Google Scholar 

  23. Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham TE, et al. Amber 16. San Francisco: University of California; 2016.

    Google Scholar 

  24. Jurrus E, Engel D, Star K, Monson K, Brandi J, et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27(1):112–28.

    Article  CAS  PubMed  Google Scholar 

  25. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35:W522–5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35.

    Article  ADS  CAS  Google Scholar 

  27. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1993;81:3684–90.

    Article  ADS  Google Scholar 

  28. Darden T, York D, Pedersen L. Particle mesh ewald – An N.LOG(N) method for ewald sums in large systems. J Chem Phys. 1993;98(12):10089–92.

    Article  ADS  CAS  Google Scholar 

  29. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical-integration of cartesian equations of motion of a system with constraints-molecular-dynamics of n-alkanes. J Comput Phys. 1977;23:327–41.

    Article  ADS  CAS  Google Scholar 

  30. Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084–95.

    Article  CAS  PubMed  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics Modell. 1996;14(1):33–8.

    Article  CAS  Google Scholar 

  32. Xiuzhen G, Qinyuan M, Hailiang Z. Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl Microbiol Biotechnol. 2015;99(8):3341–9.

    Article  Google Scholar 

  33. Lee S-C, Chang Y, Shin D-M, Han J, Seo M-H, et al. Designing the substrate specificity of D-hydantoinase using a rational approach. Enzyme Microb Technol. 2009;44(3):170–5.

    Article  CAS  Google Scholar 

  34. Chao YP, Fu H, Lo TE, Chen PT, Wang JJ. One-step production of D-p-hydroxyphenylglycine by recombinant Escherichia coli strains. Biotechnol Prog. 1999;15(6):1039–45.

    Article  CAS  PubMed  Google Scholar 

  35. Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure. 2000;8(7):729–37.

    Article  CAS  PubMed  Google Scholar 

  36. Cai YJ, Hai Y, Ohashi M, Jamieson CS, Garcia-Borras M, et al. Structural basis for stereoselective dehydration and hydrogen-bonding catalysis by the SAM-dependent pericyclase Lepl. Nat Chem. 2019;11(9):812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cui H, Eltoukhy L, Zhang L, Markel U, Jaeger KE, et al. Less unfavorable salt bridges on the enzyme surface result in more organic cosolvent resistance. Angew Chem Int Ed. 2017;60(20):11448–56.

    Article  Google Scholar 

  38. Jones BJ, Lim HY, Huang J, Kazlauskas RJ. Comparison of five protein engineering strategies for stabilizing an alpha/beta-hydrolase. Biochemistry. 2017;56(50):6521–32.

    Article  CAS  PubMed  Google Scholar 

  39. Cao JR, Fan FF, Lv CJ, Wang HP, Li Y, et al. Improving the thermostability and activity of transaminase from Aspergillus terreus by charge-charge interaction. Front Chem. 2022. https://doi.org/10.3389/fchem.2021.664156.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, et al. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rindfleisch S, Krull M, Uranga J, Schmidt T, von Pappenheim FR, et al. Ground-state destabilization by electrostatic repulsion is not a driving force in orotidine-5 ’-monophosphate decarboxylase catalysis. Nat Catal. 2022;5(4):332–41.

    Article  CAS  Google Scholar 

  42. Nanba H, Yasohara Y, Hasegawa J, Takahashi S. Bioreactor systems for the production of optically active amino acids and alcohols. Org Process Res Dev. 2007;11(3):503–8.

    Article  CAS  Google Scholar 

  43. Hu X, Lin B. Efficient production of D-HPG with an immobilized transgenic strain E. coli LY13–05. Biotechnol Biotechnol Equip. 2015;29(5):1003–10.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (Grant No. 2021YFC2100100), the General Program of National Natural Science Foundation of China (22178146), the Program for Young Talents in China, and the Fundamental Research Funds for the Central Universities (JUSRP622011).

Author information

Authors and Affiliations

Authors

Contributions

LDZ and CZG conceived the study. LDZ and WS made contributions to the design of the experiments, the acquisition of data, the analysis and interpretation of data and contributed to manuscript writing. WQW, CG, XLC, JL, LML and JW conceived and organized the study, helped to draft the manuscript and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors approved the consent for publishing the manuscript to Systems Microbiology and Biomanufacturing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 930 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gao, C., Song, W. et al. Improving D-carbamoylase thermostability through salt bridge engineering for efficient D-p-hydroxyphenylglycine production. Syst Microbiol and Biomanuf 4, 250–262 (2024). https://doi.org/10.1007/s43393-023-00176-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00176-1

Keywords

Navigation