Skip to main content
Log in

A CRISPR–Cas12a system for multi-gene editing (CCMGE) and metabolic pathway assembly in Starmerella bombicola

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The traditional homologous recombination (HR) gene-editing method faces problems such as low editing efficiency and absence of marker genes. CRISPR–Cas9-editing efficiency is high and has been widely used in bacteria and yeast. In comparison with CRISPR–Cas9, CRISPR–Cas12a has many outstanding advantages. Here, we report an Acidaminococcus sp. BV3L6 (As) Cas12a-based genome-editing method used for Starmerella bombicola. To demonstrate the high efficiency of the CCMGE system, we verified a counter-selectable marker in S. bombicola, orotidine 5’-phosphate decarboxylase (100% for URA3). We also tested the common gene UDP-glucosyltransferase (100% for UGTA) using a 300 bp donor containing hygromycin expression cassette. This toolkit was further extended to simultaneously edit two genes (18% for UGTA and leu) and three genes (13.8% for UGTA, leu and URA3). The system greatly reduces the screening time for such multi-site editing. Based on the CCMGE system, the PHA (polyhydroxyalkanoate)-producing strain was constructed by increasing the copy number of the PHA synthase (PHAC). The PHA content and DCW reached 11.8% and 30.1 g/L, respectively. The yield of PHA was about three times higher than that of the single-copy strain using the same fermentation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Pekin G, Vardar-Sukan F, Kosaric N. Production of sophorolipids from Candida bombicola ATCC 22214 using Turkish corn oil and honey. Eng Life Sci. 2005;5(4):357–62.

    Article  CAS  Google Scholar 

  2. Daniel HJ, Reuss M, Syldatk C. Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotech Lett. 1998;20(12):1153–6.

    Article  CAS  Google Scholar 

  3. Jiang Y, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.

    Article  Google Scholar 

  4. Wang H, et al. Starmerella bombicola: recent advances on sophorolipid production and prospects of waste stream utilization. J Chem Technol Biotechnol. 2019;94(4):999–1007.

    Article  CAS  Google Scholar 

  5. Anna Y, et al. Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2021;5–6:5–6.

    Google Scholar 

  6. Vyas VK, Barrasa MI, Fink GR. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Advance. 2015;1(3):e1500248.

    Google Scholar 

  7. Yu Z, Jefd B. CRISPR–Cas12a system in fission yeast for multiplex genomic editing and CRISPR interference. Nucleic Acids Res. 2020;48(10):5788–98.

    Article  Google Scholar 

  8. Chen JS, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):791.

    Article  Google Scholar 

  9. Moreno-Mateos MA, et al. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun. 2017;8(1):2024.

    Article  Google Scholar 

  10. Yang Z, Edwards H, Xu P. CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metab Eng Commun. 2020;10:e00112. https://doi.org/10.1016/j.mec.2019.e00112

    Article  PubMed  Google Scholar 

  11. Zhang L. A CRISPR–Cas9 system for multiple genome editing and pathway assembly in Candida tropicalis. Biotechnol Bioeng. 2019;117(2):531–42.

    Article  Google Scholar 

  12. Jakounas T, et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng. 2015;28:213–22.

    Article  Google Scholar 

  13. Zetsche B, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71.

    Article  CAS  Google Scholar 

  14. Zhao Y, Boeke JD. CRISPR-Cas12a system in fission yeast for multiplex genomic editing and CRISPR interference. Nucleic Acids Res. 2020;48(10):5788–98. https://doi.org/10.1093/nar/gkaa329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su BM, et al. Recent advances in the CRISPR genome editing tool set. Exp Mol Med. 2019;51(11):1–11.

    CAS  PubMed  Google Scholar 

  16. Zetsche B, et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol. 2016;35(1):31.

    Article  Google Scholar 

  17. Ouedraogo J-P, Tsang A. CRISPR_Cas systems for fungal research. Fungal Biol Rev. 2020;34(4):189–201. https://doi.org/10.1016/j.fbr.2020.10.002.

    Article  Google Scholar 

  18. Malizia A, Monmany-Garzia AC. Terrestrial ecologists should stop ignoring plastic pollution in the Anthropocene time. Sci Total Environ. 2019;668(JUN.10):1025–9.

    Article  CAS  Google Scholar 

  19. Haddouche R, et al. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the -oxidation multifunctional protein. Appl Microbiol Biotechnol. 2011;91(5):1327–40.

    Article  CAS  Google Scholar 

  20. Poirier Y, Erard N, Petetot MC. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid β-oxidation. Appl Environ Microbiol. 2001;67(11):5254–60.

    Article  CAS  Google Scholar 

  21. Lang S. Production of native and modified sophorose lipids. Chim Oggi. 2000;18(10):76–9.

    CAS  Google Scholar 

  22. Roelants SLKW. Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng. 2013;110(9):2494–503.

    Article  CAS  Google Scholar 

  23. Roelants SL, et al. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng. 2016;113(3):550–9.

    Article  CAS  Google Scholar 

  24. Saerens K, et al. Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214. FEMS Yeast Res. 2011;11(1):123–32.

    Article  CAS  Google Scholar 

  25. Bogaert I, et al. Development of a transformation and selection system for the glycolipid-producing yeast Candida bombicola. Yeast. 2010;25(4):273–8.

    Article  Google Scholar 

  26. Imkeller K, et al. gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol. 2020;21(1):53.

    Article  CAS  Google Scholar 

  27. Huang FC, Peter A, Schwab W. Expression and Characterization of CYP52 Genes Involved in the Biosynthesis of Sophorolipid and Alkane Metabolism from Starmerella bombicola. Appl Environ Microbiol. 2014;80(2):766–76.

    Article  Google Scholar 

  28. Saerens K, et al. Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain. Yeast. 2011;28:279–92.

    Article  CAS  Google Scholar 

  29. Gao C. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. J Ind Microbiol Biotechnol. 2015;42(9):1255.

    Article  CAS  Google Scholar 

  30. Zetsche B, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol. 2017;35(1):31–4. https://doi.org/10.1038/nbt.3737.

    Article  CAS  PubMed  Google Scholar 

  31. Malzahn AA, et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol. 2019;17(1):9. https://doi.org/10.1186/s12915-019-0629-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ciurkot K, et al. CRISPR/Cas12a multiplex genome editing of Saccharomyces cerevisiae and the creation of yeast pixel art. J Vis Exp. 2019;14:7. https://doi.org/10.3791/59350.

    Article  Google Scholar 

  33. Moon SB, et al. Recent advances in the CRISPR genome editing tool set. Exp Mol Med. 2019;51(11):1–11. https://doi.org/10.1038/s12276-019-0339-7.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z, Blenner M. Genome editing systems across yeast species. Curr Opin Biotechnol. 2020;66:255–66.

    Article  CAS  Google Scholar 

  35. Kim D, et al. Erratum: Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):888.

    Article  Google Scholar 

  36. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71.

    Article  CAS  Google Scholar 

  37. Song L, et al. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PLoS ONE. 2018;13(8):e020868.

    Google Scholar 

  38. Min JK, et al. Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi. Fungal Biol Biotechnol. 2019;6(1):15.

    Article  Google Scholar 

  39. Malzahn AA, et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol. 2019;17(1):1–9.

    Article  Google Scholar 

  40. Van BINA, et al. Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production. FEMS Yeast Res. 2010;4:4.

    Google Scholar 

  41. Ramdane H, et al. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards beta-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. FEMS Yeast Res. 2010;10(7):917–27.

    Article  Google Scholar 

  42. Poirier Y, et al. Peroxisomal beta-oxidation–a metabolic pathway with multiple functions. Biochim Biophys Acta. 2006;1763(12):1413–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the 111 Project (No. 111-2-06), National Natural Science Foundation of China (32001064), Key Research and Development Program of China (2021YFC2100102-03), China Postdoctoral Science Foundation (2020M671331), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX20-1807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1415 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Shi, Y., Zhang, L. et al. A CRISPR–Cas12a system for multi-gene editing (CCMGE) and metabolic pathway assembly in Starmerella bombicola. Syst Microbiol and Biomanuf 2, 665–675 (2022). https://doi.org/10.1007/s43393-022-00093-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00093-9

Keywords

Navigation