Skip to main content
Log in

Production, purification and activity evaluation of three novel antioxidant peptides obtained from grass carp (Ctenopharyngodon idella) scale waste by microbial protease BaApr1 hydrolysis

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

In this study, an alkaline protease BaApr1 from the Bacillus altitudinis W3 was chosen to hydrolysis grass carp (Ctenopharyngodon idella) scales. The hydrolysate of alkaline protease BaApr1 exhibited the best antioxidant activity compared to other protease hydrolysates. The optimal hydrolysis conditions for BaApr1 were an enzyme dosage of 1250 U/g, a hydrolysis time of 7 h, a pH of 9.5 and a temperature of 50 °C. Three novel peptides were purified using ultrafiltration, anion exchange chromatography, gel filtration chromatography and ultra-performance liquid chromatography, and their sequences were identified as Tyr-Val-Gln-Ala-Gly-Ala-Ala-Gly-Ala-Ala-Ala-His (SHP2), Val-Lys-Leu-Tyr-Val-Leu-Leu-Val-Pro (SHP4), and Val-Gln-Val-Leu-Ala-Gly-Pro-Val-Val-Lys-Leu-Tyr (SHP5) with molecular weights of 1086.53 Da, 1043.69 Da and 1285.79 Da, respectively. Among them, SHP2 exhibited the highest scavenging activity on DPPH· (EC50 4.08 mg/mL), ABTS+· (EC50 0.23 mg/mL) and HO· (EC50 2.78 mg/mL), and the strongest reducing power. Additionally, SHP5 can significantly inhibit lipid peroxidation in the linoleic acid system. In conclusion, three peptides isolated from scales of hydrolysate of grass carp showed great antioxidant activity and might be used as potential food ingredients and pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise: a Cochrane systematic review. Br J Sports Med. 2020;54:74–8. https://doi.org/10.1136/bjsports-2018-099599.

    Article  PubMed  Google Scholar 

  2. Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, Valko M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol. 2019;93:2491–513. https://doi.org/10.1007/s00204-019-02538-y.

    Article  CAS  PubMed  Google Scholar 

  3. Alnajjar KS, Sweasy JB. A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair. 2019;76:60–9. https://doi.org/10.1016/j.dnarep.2019.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sachidanandam K, Fagan SC, Ergul AJCDR. Oxidative stress and cardiovascular disease: antioxidants and unresolved issues. Cardiovas Drug Rev. 2010;23:115–32. https://doi.org/10.1111/j.1527-3466.2005.tb00160.x.

    Article  Google Scholar 

  5. Fontoura R, Daroit DJ, Correa APF, Moresco KS, Santi L, Beys-da-Silva WO, Yates JR 3rd, Moreira JCF, Brandelli A. Characterization of a novel antioxidant peptide from feather keratin hydrolysates. N Biotechnol. 2019;49:71–6. https://doi.org/10.1016/j.nbt.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  6. Di Bernardini R, Rai DK, Bolton D, Kerry J, O’Neill E, Mullen AM, Harnedy P, Hayes M. Isolation, purification and characterization of antioxidant peptidic fractions from a bovine liver sarcoplasmic protein thermolysin hydrolyzate. Peptides. 2011;32:388–400. https://doi.org/10.1016/j.peptides.2010.11.024.

    Article  CAS  PubMed  Google Scholar 

  7. Liu R, Mabury SA. Synthetic phenolic antioxidants: a review of environmental occurrence, fate, human exposure, and toxicity. Environ Sci Technol. 2020;54:11706–19. https://doi.org/10.1021/acs.est.0c05077.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Duan X, Zhuang Y. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides. 2012;38:13–21. https://doi.org/10.1016/j.peptides.2012.08.014.

    Article  CAS  PubMed  Google Scholar 

  9. Yang XR, Zhang L, Ding DG, Chi CF, Wang B, Huo JC. Preparation, identification, and activity evaluation of eight antioxidant peptides from protein hydrolysate of hairtail (Trichiurus japonicas) muscle. Mar Drugs. 2019. https://doi.org/10.3390/md17010023.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chi C-F, Wang B, Hu F-Y, Wang Y-M, Zhang B, Deng S-G, Wu C-W. Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Res Int. 2015;73:124–9. https://doi.org/10.1016/j.foodres.2014.08.038.

    Article  CAS  Google Scholar 

  11. Pan XY, Wang YM, Li L, Chi CF, Wang B. Four antioxidant peptides from protein hydrolysate of red stingray (Dasyatis akajei) cartilages: Isolation, identification, and in vitro activity evaluation. Mar Drugs. 2019. https://doi.org/10.3390/md17050263.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Je J-Y, Qian Z-J, Byun H-G, Kim S-K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007;42:840–6. https://doi.org/10.1016/j.procbio.2007.02.006.

    Article  CAS  Google Scholar 

  13. Himaya SWA, Ngo D-H, Ryu B, Kim S-K. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem. 2012;132:1872–82. https://doi.org/10.1016/j.foodchem.2011.12.020.

    Article  CAS  Google Scholar 

  14. Chen N, Yang H, Sun Y, Niu J, Liu S. Purification and identification of antioxidant peptides from walnut (Juglans regia L) protein hydrolysates. Peptides. 2012;38:344–9. https://doi.org/10.1016/j.peptides.2012.09.017.

    Article  CAS  PubMed  Google Scholar 

  15. FAO. The State of World Fisheries and Aquaculture 2020, sustainability in action. Rome: FAO; 2020. https://doi.org/10.4060/ca9229en (978-92-5-132692-3).

    Book  Google Scholar 

  16. He L, Lan W, Cen L, Chen S, Liu S, Liu Y, Ao X, Yang Y. Improving catalase stability by its immobilization on grass carp (Ctenopharyngodon idella) scale collagen self-assembly films. Mater Sci Eng C. 2019;105: 110024. https://doi.org/10.1016/j.msec.2019.110024.

    Article  CAS  Google Scholar 

  17. Chen YP, Liang CH, Wu HT, Pang HY, Chen C, Wang GH, Chan LP. Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish (Chanos chanos) scales. J Food Sci Technol. 2018;55:2310–7. https://doi.org/10.1007/s13197-018-3148-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sila A, Bougatef A. Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review J Funct Foods. 2016;21:10–26. https://doi.org/10.1016/j.jff.2015.11.007.

    Article  CAS  Google Scholar 

  19. Tkaczewska J, Bukowski M, Mak P. Identification of antioxidant peptides in enzymatic hydrolysates of carp (Cyprinus Carpio) skin gelatin. Molecules. 2018. https://doi.org/10.3390/molecules24010097.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cai L, Wu X, Zhang Y, Li X, Ma S, Li J. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. J Funct Foods. 2015;16:234–42. https://doi.org/10.1016/j.jff.2015.04.042.

    Article  CAS  Google Scholar 

  21. Hu X, Yang X, Wang T, Li L, Wu Y, Zhou Y, You L. Purification and identification of antioxidant peptides from round scad (Decapterus maruadsi) hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem Toxicol. 2020;135: 110882. https://doi.org/10.1016/j.fct.2019.110882.

    Article  CAS  PubMed  Google Scholar 

  22. Chai TT, Xiao J, Mohana-Dass S, Teoh JY, Ee KY, Ng WJ, Wong FC. Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chem. 2021;340:127876. https://doi.org/10.1016/j.foodchem.2020.127876.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao W-H, Luo Q-B, Pan X, Chi C-F, Sun K-L, Wang B. Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy). J Funct Foods. 2018;47:503–11. https://doi.org/10.1016/j.jff.2018.06.014.

    Article  CAS  Google Scholar 

  24. Yang S, Zhai L, Huang L, Meng D, Li J, Hao Z, Guan Z, Cai Y, Liao X. Mining of alkaline proteases from Bacillus altitudinis W3 for desensitization of milk proteins: their heterologous expression, purification, and characterization. Int J Biol Macromol. 2020;153:1220–30. https://doi.org/10.1016/j.ijbiomac.2019.10.252.

    Article  CAS  PubMed  Google Scholar 

  25. Gulmez C, Atakisi O, Dalginli KY, Atakisi E. Organic solvent stable and thermo-alkaline recombinant subtilisin as a novel biocatalytic detergent additive. Int J Biol Macromol. 2018;108:436–43. https://doi.org/10.1016/j.ijbiomac.2017.11.133.

    Article  CAS  PubMed  Google Scholar 

  26. Pati F, Adhikari B, Dhara S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol. 2010;101:3737–42. https://doi.org/10.1016/j.biortech.2009.12.133.

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen PM, Petersen D, Dambmann CJJOFS. Improved method for determining food protein degree of hydrolysis. Food Chem Toxicol. 2010;66:642–6. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x.

    Article  Google Scholar 

  28. Agrawal H, Joshi R, Gupta M. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res Int. 2019;120:697–707. https://doi.org/10.1016/j.foodres.2018.11.028.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu S, Du C, Yu T, Cong X, Liu Y, Chen S, Li Y. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J Food Sci. 2019;84:3504–11. https://doi.org/10.1111/1750-3841.14843.

    Article  CAS  PubMed  Google Scholar 

  30. Qiu YT, Wang YM, Yang XR, Zhao YQ, Chi CF, Wang B. Gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) scales: preparation, identification and activity evaluation. Mar Drugs. 2019. https://doi.org/10.3390/md17100565.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu Y, Fan F, Wu D, Yu C, Wang Z, Du M. Antioxidant and ACE inhibitory activity of enzymatic hydrolysates from Ruditapes philippinarum. Molecules. 2018. https://doi.org/10.3390/molecules23051189.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chi C-F, Wang B, Deng Y-Y, Wang Y-M, Deng S-G, Ma J-Y. Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Res Int. 2014;55:222–8. https://doi.org/10.1016/j.foodres.2013.11.018.

    Article  CAS  Google Scholar 

  33. Wang B, Li ZR, Chi CF, Zhang QH, Luo HY. Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides. 2012;36:240–50. https://doi.org/10.1016/j.peptides.2012.05.013.

    Article  CAS  PubMed  Google Scholar 

  34. Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: a review. Peptides. 2010;31:1949–56. https://doi.org/10.1016/j.peptides.2010.06.020.

    Article  CAS  PubMed  Google Scholar 

  35. Ktari N, Fakhfakh N, Balti R, Ben Khaled H, Nasri M, Bougatef A. Effect of degree of hydrolysis and protease type on the antioxidant activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. J Aquat Food Prod Technol. 2013;22:436–48. https://doi.org/10.1080/10498850.2012.658961.

    Article  CAS  Google Scholar 

  36. Liu Q, Kong B, Xiong YL, Xia X. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 2010;118:403–10. https://doi.org/10.1016/j.foodchem.2009.05.013.

    Article  CAS  Google Scholar 

  37. Foh MB, Amadou I, Foh BM, Kamara MT, Xia W. Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. Int J Mol Sci. 2010;11:1851–69. https://doi.org/10.3390/ijms11041851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Domenico S, De Rinaldis G, Paulmery M, Piraino S, Leone A. Barrel jellyfish (Rhizostoma pulmo) as source of antioxidant peptides. Mar Drugs. 2019. https://doi.org/10.3390/md17020134.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Li M, Zhang G, Tian Y, Kong F, Xiong S, Zhao S, Jia D, Manyande A, Du H. Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the anti-oxidation mechanisms. Food Chem. 2021;337: 127921. https://doi.org/10.1016/j.foodchem.2020.127921.

    Article  CAS  PubMed  Google Scholar 

  40. Wang WY, Zhao YQ, Zhao GX, Chi CF, Wang B. Antioxidant peptides from collagen hydrolysate of redlip croaker (Pseudosciaena polyactis) scales: preparation, characterization, and cytoprotective effects on H2O2-damaged HepG2 cells. Mar Drugs. 2020. https://doi.org/10.3390/md18030156.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chi C-F, Hu F-Y, Wang B, Ren X-J, Deng S-G, Wu C-W. Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chem. 2015;168:662–7. https://doi.org/10.1016/j.foodchem.2014.07.117.

    Article  CAS  PubMed  Google Scholar 

  42. Ahn CB, Kim JG, Je JY. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 2014;147:78–83. https://doi.org/10.1016/j.foodchem.2013.09.136.

    Article  CAS  PubMed  Google Scholar 

  43. Chi C-F, Wang B, Wang Y-M, Zhang B, Deng S-G. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J Funct Foods. 2015;12:1–10. https://doi.org/10.1016/j.jff.2014.10.027.

    Article  CAS  Google Scholar 

  44. Yang XR, Zhao YQ, Qiu YT, Chi CF, Wang B. Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Mar Drugs. 2019. https://doi.org/10.3390/md17020078.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pan X, Zhao Y-Q, Hu F-Y, Wang B. Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. J Funct Foods. 2016;25:220–30. https://doi.org/10.1016/j.jff.2016.06.008.

    Article  CAS  Google Scholar 

  46. Dreher D, Junod AFJEJOC. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996;32:30–8. https://doi.org/10.1016/0959-8049(95)00531-5.

    Article  Google Scholar 

  47. Tao J, Zhao YQ, Chi CF, Wang B. Bioactive peptides from cartilage protein hydrolysate of spotless smoothhound and their antioxidant activity in vitro. Mar Drugs. 2018. https://doi.org/10.3390/md16040100.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Akinyede AI, Fagbemi TN, Osundahunsi OF, Aluko RE. Amino acid composition and antioxidant properties of the enzymatic hydrolysate of calabash nutmeg (Monodora myristica) and its membrane ultrafiltration peptide fractions. J Food Biochem. 2021;45: e13437. https://doi.org/10.1111/jfbc.13437.

    Article  CAS  PubMed  Google Scholar 

  49. Yang J, Huang J, Dong X, Zhang Y, Zhou X, Huang M, Zhou G. Purification and identification of antioxidant peptides from duck plasma proteins. Food Chem. 2020;319: 126534. https://doi.org/10.1016/j.foodchem.2020.126534.

    Article  CAS  PubMed  Google Scholar 

  50. Nimalaratne C, Bandara N, Wu J. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chem. 2015;188:467–72. https://doi.org/10.1016/j.foodchem.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  51. Zheng L, Yu H, Wei H, Xing Q, Zou Y, Zhou Y, Peng J. Antioxidative peptides of hydrolysate prepared from fish skin gelatin using ginger protease activate antioxidant response element-mediated gene transcription in IPEC-J2 cells. J Funct Foods. 2018;51:104–12. https://doi.org/10.1016/j.jff.2018.08.033.

    Article  CAS  Google Scholar 

  52. Lopez-Pedrouso M, Borrajo P, Pateiro M, Lorenzo JM, Franco D. Antioxidant activity and peptidomic analysis of porcine liver hydrolysates using alcalase, bromelain, flavourzyme and papain enzymes. Food Res Int. 2020;137: 109389. https://doi.org/10.1016/j.foodres.2020.109389.

    Article  CAS  PubMed  Google Scholar 

  53. Hu XM, Wang YM, Zhao YQ, Chi CF, Wang B. Antioxidant peptides from the protein hydrolysate of monkfish (Lophius litulon) muscle: purification, identification, and cytoprotective function on HepG2 cells damage by H2O2. Mar Drugs. 2020. https://doi.org/10.3390/md18030153.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Samaranayaka AGP, Li-Chan ECY. Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J Funct Foods. 2011;3:229–54. https://doi.org/10.1016/j.jff.2011.05.006.

    Article  CAS  Google Scholar 

  55. Ketnawa S, Wickramathilaka M, Liceaga AM. Changes on antioxidant activity of microwave-treated protein hydrolysates after simulated gastrointestinal digestion: Purification and identification. Food Chem. 2018;254:36–46. https://doi.org/10.1016/j.foodchem.2018.01.133.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Collaborative Innovation Involving Production, Teaching & Research Funds of Jiangsu Province (BY2014023-28). We would like to thank all group members of our laboratory for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangru Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Tian, Q., Meng, T. et al. Production, purification and activity evaluation of three novel antioxidant peptides obtained from grass carp (Ctenopharyngodon idella) scale waste by microbial protease BaApr1 hydrolysis. Syst Microbiol and Biomanuf 2, 568–579 (2022). https://doi.org/10.1007/s43393-022-00081-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00081-z

Keywords

Navigation