Skip to main content

Advertisement

Log in

PSC-PWM modulated MPC for cascaded H-bridge power supplies

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In the high-power applications of cascaded H-bridge (CHB) converters, when considering the limitations of the switching characteristics of the power device, the phase-shifted carrier’s pulse width modulation (PSC-PWM) is used to increase the equivalent switching frequency to improve the output quality. However, interleaved carriers make the CHB output characteristics change. Thus, the optimal performance of the traditional fixed switching frequency model predictive control (MPC) using synchronous carrier modulation is no longer applicable. Moreover, it is difficult for the traditional state-space predictive model to quickly eliminate the prediction error caused by a model mismatch in the transient response process. Therefore, parameter mismatch under high uncertainties leads to a significant decrease in the transient optimization performance. In this study, a PSC-PWM modulated MPC is proposed to replace the fixed switching frequency with PSC-PWM and to suppress the parameter mismatching in the predictive model by an adaptive observer. The CHB output voltage is regarded as a whole based on the voltage-second balanced rule within an equivalent switching period to use the adaptive observer. The CHB optimal vector duration calculated by the optimization strategy at each sampling time is implemented by the PSC-PWM within an associated H-bridge carrier period. Excellent dynamic and transient performances of the reference tracking can be obtained by the proposed method at similar carrier frequencies. Finally, the tracking performances are verified by experiments conducted on a 5L-CHB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tommasi, G., Mele, A., Luo, Z. P., Pironti, A., Xiao, B.J.: On plasma vertical stabilization at EAST tokamak. In: Proceedings of 2017 IEEE Conference on Control Technology and Applications, 511–516 (2017).

  2. Huang, H., Yan, T., Wang, H.: Application of a current and voltage mixed control mode for the new fast control power supply at EAST. Plasma Sci. Technol 16(4), 420–423 (2014)

    Article  Google Scholar 

  3. Zheng, L., Kandula, R.P., Divan, D.: Robust predictive control for modular solid-state transformer with reduced DC link and parameter mismatch. IEEE Trans. Power Electron. 36(12), 14295–14311 (2021)

    Article  Google Scholar 

  4. Zhang, Y., Yin, Z., Li, W., Liu, J., Zhang, Y.: Adaptive sliding-mode-based speed control in finite control set model predictive torque control for induction motors. IEEE Trans. Power Electron. 36(7), 8076–8087 (2021)

    Article  Google Scholar 

  5. Carlet, P.G., Favato, A., Bolognani, S., Dorfle, F.: Data-driven continuous-set predictive current control for synchronous motor drives. IEEE Trans. Power Electron. 37(6), 6637–6646 (2022)

    Article  Google Scholar 

  6. Toso, F., Favato, A., Torchio, R., Alotto, P., Bolognani, S.: Continuous control set model predictive current control of a microgrid-connected PWM inverter. IEEE Trans. Power Syst. 36(1), 415–425 (2021)

    Article  Google Scholar 

  7. Song, Z., Ma, X., Zhang, R.: Enhanced finite-control-set model predictive flux control of permanent magnet synchronous machines with minimum torque ripples. IEEE Trans. Ind. Electron. 68(9), 7804–7813 (2021)

    Article  Google Scholar 

  8. Guzman, R., Garcia, L., de Vicuna, A., Camacho, J.M., Rey, J.M.: Receding-horizon model-predictive control for a three-phase VSI with an LCL filter. IEEE Trans. Ind. Electron. 66(9), 6671–6680 (2019)

    Article  Google Scholar 

  9. Gong, C., Yihua, H., Ma, M., Yan, L., Liu, J., Wen, H.: Accurate FCS model predictive current control technique for surface-mounted PMSMs at low control frequency. IEEE Trans. Power Electron. 35(6), 5567–5572 (2020)

    Article  Google Scholar 

  10. Baier, C.R., Ramirez, R.O., Marciel, E.I., Hernandez, J.C., Melin, P.E., Espinosa, E.E.: FCS-MPC without steady-state error applied to a grid-connected cascaded H-bridge multilevel inverter. IEEE Trans. Power Electron. 36(10), 11785–11799 (2021)

    Article  Google Scholar 

  11. Bin, Y., Song, W., Li, J., Li, B., Saeed, M.S.R.: Improved finite control set model predictive current control for five-phase VSIs. IEEE Trans. Power Electron. 36(6), 7038–7048 (2021)

    Article  Google Scholar 

  12. Gao, N., Zhang, B., Weimin, W., Blaabjerg, F.: Finite control set model predictive control integrated with disturbance observer for battery energy storage power conversion system. J. Power Electron. 21(2), 342–353 (2021)

    Article  Google Scholar 

  13. Yang, X., Wang, K., Kim, J., Park, K.-B.: Artificial neural network-based FCS-MPC for three-level inverters. J. Power Electron. 22, 2158 (2022)

    Article  Google Scholar 

  14. Zhang, Y., Xie, W., Li, Z., Zhang, Y.: Model predictive direct power control of a PWM rectifier with duty cycle optimization. IEEE Trans. Power Electron. 28(11), 5343–5351 (2013)

    Article  Google Scholar 

  15. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Del. 33(5), 2115–2124 (2018)

    Article  Google Scholar 

  16. Ma, F., He, Z., Qianming, X., Luo, A., Zhou, L., Li, M.: Multilevel power conditioner and its model predictive control for railway traction system. IEEE Trans. Ind. Electron. 63(11), 7275–7285 (2016)

    Article  Google Scholar 

  17. Judewicz, M.G., Gonzalez, S.A., Echeverria, N.I., Fischer, J.R., Carrica, D.O.: Generalized predictive current control (GPCC) for grid-tie three-phase inverters. IEEE Trans. Ind. Electron. 63(7), 4475–4484 (2016)

    Article  Google Scholar 

  18. Alkorta, P., Barambones, O., Cortajarena, J.A., Zubizarrreta, A.: Efficient multivariable generalized predictive control for sensorless induction motor drives. IEEE Trans. Ind. Electron. 61(9), 5126–5134 (2014)

    Article  Google Scholar 

  19. Zhang, X., Shi, T., Wang, Z., Geng, Q., Xia, C.: Generalized predictive contour control of the biaxial motion system. IEEE Trans. Ind. Electron. 65(11), 8488–8497 (2018)

    Article  Google Scholar 

  20. Aguilera, R. P., Acuna, P., Su, X., Lezana, P., Mcgrath, B.: Sequential phase-shifted model predictive control for multicell power converters. In: Proceedings of 2017 IEEE Southern Power Electron. Conference, pp 1–6, (2017).

  21. Zhou, D., Yang, S., Tang, Y.: Model-predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation. IEEE Trans. Ind. Electron. 66(6), 4368–4378 (2019)

    Article  Google Scholar 

  22. Cuzmar, R.H., Pereda, J., Aguilera, R.P.: Phase-shifted model predictive control to achieve power balance of CHB converters for large-scale photovoltaic integration. IEEE Trans. Ind. Electron. 68(10), 9619–9629 (2021)

    Article  Google Scholar 

  23. Gersnoviez, A., Brox, M., Baturone, I.: High-speed and low-cost implementation of explicit model predictive controllers. IEEE Trans. Control Syst. Technol. 27(2), 647–662 (2019)

    Article  Google Scholar 

  24. Jing Chen, Y., Chen, L.T., Peng, L., Kang, Y.: A backpropagation neural network-based explicit model predictive control for DC–DC converters with high switching frequency. IEEE J. Emerg. Sel. Topics Power Electron. 8(3), 2124–2142 (2020)

    Article  Google Scholar 

  25. Yan, B., Huang, H., Wang, H.: Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality. J. Power Electron. 22, 1496–1507 (2022)

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China, 11275056

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bichen Yan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Huang, H. & Wang, H. PSC-PWM modulated MPC for cascaded H-bridge power supplies. J. Power Electron. 23, 746–757 (2023). https://doi.org/10.1007/s43236-022-00579-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00579-8

Keywords

Navigation