Skip to main content

Advertisement

Log in

Analysis of a coupled inductor boost three-port converter with high voltage gain for renewable energy systems

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

A conventional boost three-port converter is combined with a coupled-inductor-based boost-flyback converter in this work to produce a high-step-up three-port converter. The proposed converter inherits the benefits of two conventional converters, including high voltage gain, few elements, and energy recycling of the leakage inductor. In addition, the voltage stresses of switches are considerably lower than the output voltage. Therefore, switches with low ON resistance can be selected to reduce the conduction loss. Additionally, the freewheel diodes are capable of zero-current switching. The operation principle can be divided into three modes of operation, and the three steady-state operation modes are analyzed under each of the three conduction modes. The operation principles of various modes, the voltage characteristics, the boundary of the coupled inductor, and the proposed converter’s control method are discussed in depth to provide detailed theoretical guidance to designers. Then, the simulation and experiment results of a laboratory prototype with an 18 V PV source, 24 V battery pack, and 180 V output are presented to validate the feasibility of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Lu, Y., Sun, K., Wu, H., Dong, X., Xing, Y.: A three-port converter based distributed DC grid connected PV system with autonomous output voltage sharing control. IEEE Trans. Power Electron. 34(1), 325–339 (2019)

    Article  Google Scholar 

  2. Zou, S., Lu, J., Khaligh, A.: Modelling and control of a triple-active-bridge converter. IET Power Electron. 13(11), 961–969 (2020)

    Article  Google Scholar 

  3. Wang, Z., Luo, Q., Wei, Y., Mou, D., Lu, X., Sun, P.: Topology analysis and review of three-port DC–DC converters. IEEE Trans. Power Electron. 35(11), 11783–11800 (2020)

    Article  Google Scholar 

  4. Wu, H., Sun, K., Ding, S., Xing, Y.: Topology derivation of nonisolated three-port DC–DC converters from DIC and DOC. IEEE Trans. Power Electron. 28(7), 3297–3307 (2013)

    Article  Google Scholar 

  5. Ding, S., Wu, H., Xing, Y., Fang, Y., Ma, X.: Topology and control of a family of non-isolated three-port DC-DC converters with a bidirectional cell. 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 1089–1094 (2013)

  6. Faraji, R., Ding, L., Esteki, M., Mazloum, N., Khajehoddin, S.A.: Soft-switched single inductor single stage multiport bidirectional power converter for hybrid energy systems. IEEE Trans. Power Electron. 36(10), 11298–11315 (2021)

    Article  Google Scholar 

  7. Faraji, R., Ding, L., Rahimi, T., Farzanehfard, H., Hafezi, H., Maghsoudi, M.: Efficient multi-port bidirectional converter with soft-switching capability for electric vehicle applications. IEEE Access. 9, 107079–107094 (2021)

    Article  Google Scholar 

  8. Faraji, R., Ding, L., Rahimi, T., Kheshti, M., Islam, M.D.R.: Soft-switched three-port DC-DC converter with simple auxiliary circuit. IEEE Access. 9, 66738–66750 (2021)

    Article  Google Scholar 

  9. Honarjoo, B., Madani, S., Niroomand, M., Adib, E.: Non-isolated high step-up three-port converter with single magnetic element for photovoltaic systems. IET Power Electron. 11(13), 151–2160 (2018)

    Article  Google Scholar 

  10. Saadatizadeh, Z., Heris, P.C., Babaei, E., Sabahi, M.: A new nonisolated single-input three-output high voltage gain converter with low voltage stresses on switches and diodes. IEEE Trans. Ind. Electron. 66(6), 4308–4318 (2019)

    Article  Google Scholar 

  11. Chien, L.J., Chen, C.C., Chen, J.F., Hsieh, Y.P.: Novel three-port converter with high-voltage gain. IEEE Trans. Power Electron. 29(9), 4693–4703 (2014)

    Article  Google Scholar 

  12. Liang, T., Liao, K., Chen, K., Chen, S.: Three-port converter with single coupled inductor for high step-up applications. IEEE Trans. Power Electron. 37(8), 9840–9849 (2022)

    Article  Google Scholar 

  13. Mirzaee, A., Moghani, J.S.: Coupled inductor-based high voltage gain DC–DC converter for renewable energy applications. IEEE Trans. Power Electron. 35(7), 7045–7057 (2020)

    Article  Google Scholar 

  14. Liu, H., Wang, L., Ji, Y., Li, F.: A novel reversal coupled inductor high-conversion-ratio bidirectional DC-DC converter. IEEE Trans. Power Electron. 33(6), 4968–4979 (2018)

    Article  Google Scholar 

  15. Tarzamni, H., Sabahi, M., Rahimpour, S., Lehtonen, M., Dehghanian, P.: Operation and design consideration of an ultrahigh step-Up DC–DC converter featuring high power density. IEEE J. Emerg. Sel. Topics Power Electron. 9(5), 6113–6123 (2021)

    Article  Google Scholar 

  16. Liu, Y., Dou, Y., Du, M., Wei, K., Gerard, H., Andersen, M.A.E., Ouyang, Z.: High frequency wide output range boost-flyback converter with zero voltage switching. 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC). 1–6 (2018)

  17. Ding, X., Yu D., Song, Y., Xue, B.: Integrated switched coupled-inductor boost-flyback converter. 2017 IEEE Energy Conversion Congress and Exposition (ECCE). 211–216 (2017)

  18. Muoz, J.G., Angulo, F., Angulo-Garcia, D.: Designing a hysteresis band in a boost flyback converter. Mech. Syst. Signal Process. 147, 107080 (2021)

    Article  Google Scholar 

  19. Chen, Z., Zhou, Q., Xu, J.: Coupled-inductor boost integrated flyback converter with high-voltage gain and ripple-free input current. IET Power Electron. 8(2), 213–220 (2015)

    Article  Google Scholar 

  20. Kim, D.H., Jang, J.H., Park, J.H., Kim, J.W.: Single-ended high-efficiency step-up converter using the isolated switched-capacitor cell. J. Power Electron. 13(5), 766–778 (2013)

    Article  Google Scholar 

  21. Gao, M., Yu, W., Wang, S., Shi, J.: Synthesis of multi-port converters based on series/parallel input pulsating cells and output pulsating cells. J. Power Electron. (2022). https://doi.org/10.1007/s43236-022-00480-4

    Article  Google Scholar 

  22. Ning, P., Yuan, T., Kang, Y., Han, C., Li, L.: Review of Si IGBT and SiC MOSFET based on hybrid switch. Chin. J. Electr. Eng. 5(3), 20–29 (2019)

    Article  Google Scholar 

  23. Luo, P., Guo, L., Xu, J., Li, X.: Analysis and design of a new non-isolated three-port converter with high voltage gain for renewable energy applications. IEEE Access. 9(1), 115909–115921 (2021)

    Article  Google Scholar 

  24. Zhuo, G., Tian, Q., Wang, L.: Soft-switching high gain three-port converter based on coupled inductor for renewable energy system applications. IEEE Trans. Ind. Electron. 69(2), 1521–1536 (2022)

    Article  Google Scholar 

  25. Cheraghi, R., Adib, E., Golsorkhi, M.S.: A nonisolated high step-up three-port soft-switched converter with minimum switches. IEEE Trans. Ind. Electron. 68(10), 9358–9365 (2021)

    Article  Google Scholar 

  26. Saadatizadeh, Z., Babaei, E., Blaabjerg, F., Cecati, C.: Three-port high step-up and high step-down DC-DC converter with zero input current ripple. IEEE Trans. Power Electron. 36(2), 1804–1813 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (52077199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjiang Shi.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wang, S., Yu, W. et al. Analysis of a coupled inductor boost three-port converter with high voltage gain for renewable energy systems. J. Power Electron. 22, 2100–2121 (2022). https://doi.org/10.1007/s43236-022-00533-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00533-8

Keywords

Navigation