Skip to main content
Log in

Parameter identification for dual-phase shift modulated DAB converters

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Deadbeat control is an effective method for controlling the output voltage of dual active bridge converters. However, its effectiveness depends on the model parameter accuracy. In practice, the model parameters of dual active bridge converters vary depending on the operation conditions, manufacturing tolerances, and calendar aging. This leads to performance degradation and causes steady-state errors of the output voltage. To overcome the effect of parameter mismatch, this study proposed an algorithm to achieve the online identification of two model parameters, i.e., the series inductor and the output capacitor. Based on a least-squares analysis, the online parameter identification of a dual active bridge converter under dual-phase shift modulation is implemented to obtain the actual values of model parameters. Consequently, the steady-state errors of the output voltage are immediately mitigated after every sampling period when the optimal predicted phase shift duty ratios are updated. The proposed algorithm was tested through both simulations and experiments to verify its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhao, B., Song, Q., Liu, W., Sun, Y.: Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091–4106 (2014)

    Article  Google Scholar 

  2. Hou, N., Li, Y.W.: Overview and comparison of modulation and control strategies for a nonresonant single-phase dual-active-bridge DC-DC converter. IEEE Trans. Power Electron. 35(3), 3148–3172 (2020)

    Article  Google Scholar 

  3. Hou, N., Song, W., Wu, M.: Minimum-current-stress scheme of dual active bridge DC-DC converter with unified phase-shift control. IEEE Trans. Power Electron. 31(12), 8552–8561 (2016)

    Google Scholar 

  4. An, F., Song, W., Yu, B., Yang, K.: “Model predictive control with power self-balancing of the output parallel DAB DC-DC converters in power electronic traction transformer.” IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 1806–1818 (2018)

    Article  Google Scholar 

  5. Zhao, B., Song, Q., Liu, W., Sun, W.: Current-stress-optimized switching strategy of isolated bidirectional DC-DC converter with dual-phase-shift control. IEEE Trans. Ind. Electron. 60(10), 4458–4467 (2013)

    Article  Google Scholar 

  6. Guo, Z., Luo, Y., Sun, K.: Parameter identification of the series inductance in DAB converters. IEEE Trans. Power Electron. 36(7), 7395–7399 (2021)

    Article  Google Scholar 

  7. Wei, S., Zhao, Z., Li, K., Yuan, L., Wen, W.: Deadbeat current controller for bidirectional dual-active-bridge converter using an enhanced SPS modulation method. IEEE Trans. Power Electron. 36(2), 1274–1279 (2021)

    Article  Google Scholar 

  8. Dutta, S., Hazra, S., Bhattacharya, S.: A digital predictive current-mode controller for a single-phase high-frequency transformer-isolated dual-active bridge DC-to-DC converter. IEEE Trans. Ind. Electron. 63(9), 5943–5952 (2016)

    Article  Google Scholar 

  9. Gualous, H., Bouquain, D., Berthon, A., Kauffmann, J.M.: Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J. Power Sources 123(1), 86–93 (2003)

    Article  Google Scholar 

  10. Vidal, A., et al.: A method for identification of the equivalent inductance and resistance in the plant model of current-controlled grid-tied converters. IEEE Trans. Power Electron. 30(12), 7245–7261 (2015)

    Article  Google Scholar 

  11. Wilson, P.: The Circuit Designer’s Companion, 3rd edn. Newnes, London (2012)

    Google Scholar 

  12. Texas Instruments: Analog—passive devices application report (1999)

  13. Kwak, S., Moon, U.C., Park, J.C.: Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance. IEEE Trans. Power Electron. 29(11), 6178–6187 (2014)

    Article  Google Scholar 

  14. E. K. P. Chong and S. H. Zak, An Introduction to Optimization, Fourth ed. Wiley, 2013.

  15. Zhao, B., Song, Q., Liu, W.: Power characterization of isolated bidirectional dual-active-bridge DC-DC converter with dual-phase-shift control. IEEE Trans. Power Electron. 27(9), 4172–4176 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF − 2020R1A2C2009303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, TQ., Choi, SJ. Parameter identification for dual-phase shift modulated DAB converters. J. Power Electron. 21, 1866–1877 (2021). https://doi.org/10.1007/s43236-021-00311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00311-y

Keywords

Navigation