Skip to main content

Advertisement

Log in

Modified high-efficiency bidirectional DC–DC converter topology

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

A modified topology to obtain a high efficiency bidirectional type DC–DC converter without magnetic coupling is proposed in this paper. The modified circuit contains four switches with their body diodes, two inductors and a capacitor, and the topology arrangement uses two boost converters to develop the gain. The input current of the modified topology is divided between two different values of inductors, which results in high efficiency. In the buck mode, an obvious reduction in the voltage gain and an improved efficiency can be seen using synchronous rectification. The modified topology improves performance, allows for easy control structures and can be used in low output voltage high current battery charging applications. Simulations of the proposed system have been carried out through MATLAB/SIMULINK software. In addition, it has been validated through a 12 V/120 V, 40 W prototype circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Seyezhai, R., Anitha, R., Mahalakshmi, S., Bhavani, M.: High gain interleaved boost converter for fuel cell applications. BEEI 2(4), 265–271 (2013)

    Google Scholar 

  2. Lee, J.-Y., Hwang, S.-N.: Non-isolated high-gain boost converter using voltage-stacking cell. Electron. Lett. 44(10), 644–645 (2008)

    Article  Google Scholar 

  3. Barreto, L.H.S.C., Praca, P.P., Oliveira, D.S., Silva, R.N.A.L.: High-voltage gain boost converter based on three-state commutation cell for battery charging using PV panels in a single conversion stage. IEEE Trans. Power Electron. 29(1), 150–158 (2014)

    Article  Google Scholar 

  4. Duan, R.-Y., Lee, J.-D.: High-efficiency bidirectional DC–DC converter with coupled inductor. IET Power Electron. 5(1), 115–123 (2012)

    Article  Google Scholar 

  5. Tao, H., Duarte, J.L., Hendrix, M.A.M.: Line-interactive UPS using a fuel cell as the primary source. IEEE Trans. Ind. Electron. 55(8), 3012–3021 (2008)

    Article  Google Scholar 

  6. Hsieh, Y.-P., Chen, J.-F., Liang, T.-J., Yang, L.-S.: Novel high step-up DC–DC converter for distributed generation system. IEEE Trans. Ind. Electron. 60(4), 1473–1482 (2013)

    Article  Google Scholar 

  7. Chen, G., Lee, Y.-S., Hui, S.Y.R., Xu, D., Wang, Y.: Actively clamped bidirectional flyback converter. IEEE Trans. Ind. Electron. 47(4), 770–779 (2000)

    Article  Google Scholar 

  8. Zhang, F., Yan, Y.: Novel forward-flyback hybrid bidirectional DC–DC converter. IEEE Trans. Ind. Electron. 56(5), 1578–1584 (2009)

    Article  Google Scholar 

  9. Lin, B.-R., Huang, C.-L., Lee, Y.-E.: Asymmetrical pulse-width modulation bidirectional DC–DC converter. IET Power Electron. 1(3), 336–347 (2008)

    Article  Google Scholar 

  10. Mi, C., Bai, H., Wang, C., Gargies, S.: Operation, design and control of dual H-bridge-based isolated bidirectional DC–DC converter. IET Power Electron. 1(4), 507–517 (2008)

    Article  Google Scholar 

  11. Khan, F.H., Tolbert, L.M., Webb, W.E.: Hybrid electric vehicle power management solutions based on isolated and nonisolated configurations of multilevel modular capacitor-clamped converter. IEEE Trans. Ind. Electron. 56(8), 3079–3095 (2009)

    Article  Google Scholar 

  12. Sergio, B.-M., Alepuz, S., Bordonau, J.: A bidirectional multilevel boost-buck DC–DC converter. IEEE Trans. Power Electron. 26(8), 2172–2183 (2011)

    Article  Google Scholar 

  13. Peng, F.-Z., Zhang, F., Qian, Z.: A magnetic-less DC–DC converter for dual voltage automotive systems. In: Conference Record of the 2002 IEEE Industry Application 37th IAS Annual Meeting, pp 1303–1310 (2002)

  14. Lee, Y.-S., Chiu, Y.-Y.: Zero-current-switching switched-capacitor bidirectional DC–DC converter. IEE Proc. Electr. Power Appl. 152(6), 1525–1530 (2005). https://doi.org/10.1049/ip-epa:20050138

    Article  Google Scholar 

  15. Saravanan, S., Ramesh Babu, N.: Design and development of single switch high step-up DC–DC converter. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 855–863 (2018)

    Article  Google Scholar 

  16. Yang, L.-S., Liang, T.-J., Chen, J.-F.: Transformerless DC–DC converters with high step-up voltage gain. IEEE Trans. Ind. Electron. 56(8), 3144–3152 (2009)

    Article  Google Scholar 

  17. Yang, L.-S., Liang, T.-J.: Analysis and implementation of a novel bidirectional DC–DC converter. IEEE Trans. Ind. Electron. 59(1), 422–434 (2012)

    Article  Google Scholar 

  18. Hussain, A., Akhtar, R., Ali, B., Awan, S.E., Iqbal, S.: A novel bidirectional DC–DC converter with low stress and low magnitude ripples for stand-alone photovoltaic power systems. Energies 12(15), 1–29 (2019). https://doi.org/10.3390/en12152884

    Article  Google Scholar 

  19. Zhang, Y., Gao, Y., Li, J., Wang, M.S.P., Zhou, L.: High ratio bidirectional DC–DC converter with a synchronous rectification H-bridge for hybrid energy sources electric vehicles. J. Power Electron. 16(6), 2035–2044 (2016)

    Article  Google Scholar 

  20. Zhang, Y., Gao, Y., Li, J., Sumner, M.: A wide voltage-gain range asymmetric H-bridge bidirectional DC–DC converter with a common ground for energy storage systems. J. Power Electron. 18(2), 343–355 (2018)

    Google Scholar 

  21. Lai, C.-M.: Development of a novel bidirectional DC/DC converter topology with high voltage conversion ratio for electric vehicles and DC-microgrids. Energies 9(6), 1–25 (2016). https://doi.org/10.3390/en9060410

    Article  Google Scholar 

  22. Ma, C.-T.: Design and implementation of a bidirectional DC/DC converter for BESS operations. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. II (2017)

  23. Narasimharaju, B.L., Reddy, U.R., Dogga, R.: Design and analysis of voltage clamped bidirectional DC–DC converter for energy storage applications. J. Eng. 2018(7), 367–374 (2018)

    Google Scholar 

  24. Razzaghzadeh, B., Salimi, M.: Analysis of a bidirectional DC–DC converter with high voltage gain. BEEI 4(4), 280–288 (2015)

    Google Scholar 

  25. Babaei, E., Saadatizadeh, Z., Cecati, C.: High step-up high step-down bidirectional DC/DC converter. IET Power Electron. 10(12), 1556–1571 (2017)

    Article  Google Scholar 

  26. Babes, B., Boutaghane, A., Hamouda, N., Mezaache, M., Kahla, S.: A robust adaptive fuzzy fast terminal synergetic voltage control scheme for DC/DC buck converter. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE), pp. 1–5 (2019)

  27. Babes, B., Boutaghane, A., Hamouda, N., Mezaache, M.: Design of a robust voltage controller for a DC–DC buck converter using fractional-order terminal sliding mode control strategy. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE), pp 1–6 (2019)

  28. Erickson, R.W., Maksimovic, D.: Fundamentals of Power Electronics, Chap. 4, 2nd edn. Kluwer, Norwell (2001)

    Book  Google Scholar 

  29. Kazimierczuk, M.K.: Pulse-Width Modulated DC–DC Power Converters, 1st edn. Wiley, Chichester (2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sethuraman S. Somalinga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somalinga, S.S., Santha, K. Modified high-efficiency bidirectional DC–DC converter topology. J. Power Electron. 21, 257–268 (2021). https://doi.org/10.1007/s43236-020-00160-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00160-1

Keywords

Navigation