Skip to main content
Log in

Gate driver for parallel connection SiC MOSFETs with over-current protection and dynamic current balancing scheme

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In this paper, a SiC MOSFETs gate driver for parallel connections is proposed and implemented. The proposed design enhances the reliability of parallel-connected SiC MOSFETs in high-frequency applications. High-speed over-current protections are applied for both over-voltage and under-voltage situations. In addition, a dynamic balancing current sharing scheme for SiC MOSFETs is proposed for high-speed parallel applications by current feedback and switching delay time compensation. With the proposed design, parallel-connected SiC MOSFETs can work at an operation frequency of 1 MHz with over-current protections. In addition, with the dynamic current balancing scheme, the operation temperature decreases from 115 to 86.9 °C, while the temperature difference for paralleled devices drops from 25.8 to 1.8 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hazra, S., et al.: High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BIMOSFET for advanced power conversion applications. IEEE Trans. Power Electron. 31(7), 4742–4754 (2016)

    Google Scholar 

  2. Sarnago, H., et al.: A comparative evaluation of SiC power devices for high-performance domestic induction heating. IEEE Trans. Industr. Electron. 62(8), 4795–4804 (2015)

    Article  Google Scholar 

  3. Mitova, R., et al.: Investigations of 600-v gan hemt and gan diode for power converter applications. IEEE Trans. Power Electron. 29(5), 2441–2452 (2014)

    Article  Google Scholar 

  4. Camacho, A.P., et al.: A novel active gate driver for improving SiC MOSFET switching trajectory. IEEE Trans. Industr. Electron. 64(11), 9032–9042 (2017)

    Article  Google Scholar 

  5. Wei, X., et al.: A novel high-speed SiC MOSFET driver with a low switch-voltage stress. In: 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), pp. 3650–3653 (2018)

  6. Okuda, T., Hikihara, T.: Enhancement of driving capability of gate driver using gan hemts for high-speed hard switching of SiC power MOSFETs. In: 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), pp. 3654–3657 (2018)

  7. Inamori, S., et al.: Mhz-switching-speed current-source gate driver for SiC power MOSFETs. In: 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), pp. P.1–P.7 (2017)

  8. DiMarino, C., et al.: A high-power-density, high-speed gate driver for a 10 kv SiC MOSFET module. In: 2017 IEEE Electric Ship Technologies Symposium (ESTS), pp. 629–634 (2017)

  9. Wang, Z., et al.: Design and performance evaluation of overcurrent protection schemes for silicon carbide (SiC) power MOSFETs. IEEE Trans. Ind. Electron. 61(10), 5570–5581 (2014)

    Article  Google Scholar 

  10. Shi, Y., et al.: Short-circuit protection of 1200v SiC MOSFET t-type module in pv inverter application. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1–5 (2016)

  11. Shi, Y., et al.: Switching characterization and short-circuit protection of 1200 v SiC MOSFET t-type module in pv inverter application. IEEE Trans. Ind. Electron. 64(11), 9135–9143 (2017)

    Article  Google Scholar 

  12. Wang, P., et al.: An integrated gate driver with active delay control method for series connected SiC MOSFETs. In: 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6 (2018)

  13. Yang, Y., et al.: An active gate driver for improving switching performance of SiC MOSFET. In: 2018 7th International Symposium on Next Generation Electronics (ISNE), pp. 1–4 (2018)

  14. Sukhatme, Y., et al.: Digitally controlled active gate driver for SiC MOSFET based induction motor drive switching at 100 khz. In: 2017 IEEE Transportation Electrification Conference (ITEC-India), pp. 1–5 (2017)

  15. Dymond, HCP, et al.: Multi-level active gate driver for SiC MOSFETs. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5107–5112 (2017)

  16. Krishna, M.V., Hatua, K.: Closed loop analog active gate driver for fast switching and active damping of SiC MOSFET. In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3017–3021 (2018)

  17. Yang, Y., et al.: A novel active gate driver for improving switching performance of high-power SiC MOSFET modules. IEEE Trans. Power Electron. 34, 7775–7787 (2018)

    Article  Google Scholar 

  18. Acharya, S., et al.: Active gate driver for SiC-MOSFET based pv inverter with enhanced operating range. IEEE Trans. Ind. Appl. 55, 1677–1689 (2018)

    Article  Google Scholar 

  19. Nayak, P., Hatua, K.: Active gate driving technique for a 1200 v SiC MOSFET to minimize detrimental effects of parasitic inductance in the converter layout. IEEE Trans. Ind. Appl. 54(2), 1622–1633 (2018)

    Article  Google Scholar 

  20. Obara, H., et al.: Active gate control in half-bridge inverters using programmable gate driver ICs to improve both surge voltage and converter efficiency. IEEE Trans. Ind. Appl. 54(5), 4603–4611 (2018)

    Article  Google Scholar 

  21. Lin, J.J., et al.: Implementation of a wireless controlled gate driver. In: 2018 IEEE 2nd International Conference on Circuits, System and Simulation (ICCSS), pp. 17–21. Guangzhou (2018)

  22. Obara, H., et al.: Active gate control in half-bridge inverters using programmable gate driver ICs to improve both surge voltage and switching loss. In: 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1153–1159. Tampa (2017)

  23. Dymond, H.C.P., et al.: A 6.7-GHz active gate driver for GaN FETs to combat overshoot, ringing, and EMI. IEEE Trans. Power Electron. 33(1), 581–594 (2018)

    Article  Google Scholar 

  24. Li, H., et al.: Influences of device and circuit mismatches on paralleling silicon carbide MOSFETs. IEEE Trans. Power Electron. 31(1), 621–634 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (Grant No. 2017YFB0102302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, Q., Tang, X. et al. Gate driver for parallel connection SiC MOSFETs with over-current protection and dynamic current balancing scheme. J. Power Electron. 20, 319–328 (2020). https://doi.org/10.1007/s43236-019-00026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-019-00026-1

Keywords

Navigation