Skip to main content

Advertisement

Log in

Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Accurate estimation of the state of charge (SOC) of a lithium-ion battery is one of the most crucial issues of battery management system (BMS). Existing methods can achieve accurate estimation of the SOC under stable working conditions. However, they may result in inaccuracy under unstable working conditions such as dynamic cycles and different temperature conditions. This is due to the fact that the dynamic behaviors of battery states have not been considered by the parameter identification methods. In this paper, a SOC and parameter joint estimation method is put forward, where the battery model parameters are identified in real time by a particle filter (PF) with consideration of the battery states. Meanwhile, a cubature Kalman filter (CKF) is used to estimate SOC. Then, experiments under dynamic cycles and different temperature conditions are undertaken to assess the performance of the proposed algorithm when compared with the existing joint estimations. The results show that the proposed joint method can achieve a high accuracy and robustness for SOC estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Shaukat, N., Khan, B., Ail, S.M., Mehood, C.A., Khan, J., Farid, U., Majid, M., Anwar, S.M., Jawad, M., Ullah, Z.: A survey on electric vehicle transportation within smart grid system. Renew. Sustain. Energy Rev. 81, 1329–1349 (2018)

    Google Scholar 

  2. Lu, L.G.G., Han, X.-B., Li, J.Q., Hua, J.F., Ouyang, M.G.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Google Scholar 

  3. Rui, X., Cao, J.Y., Yu, Q.Q., He, H.W., Sun, F.C.: Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 6(99), 1832–1843 (2018)

    Google Scholar 

  4. Hannan, M.A., Lipu, M.S.H., Hussain, A., Mohamed, A.: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew. Sustain. Energy Rev. 78, 834–854 (2017)

    Google Scholar 

  5. Kong, S.N., Huang, Y.F., Moo, C.S., Hsieh, Y.C.: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 86(9), 1506–1511 (2009)

    Google Scholar 

  6. Zhang, Y.H., Song, W.J., Lin, S.L., Lv, J., Feng, Z.P.: A critical review on state of charge of batteries. J. Renew. Sustain. Energy 5(2), R93–R110 (2013)

    Google Scholar 

  7. Zhong, F.L., Li, H., Zhong, S.M., Zhong, Q.S., Yin, C.: An soc estimation approach based on adaptive sliding mode observer and fractional order equivalent circuit model for lithium-ion batteries. Commun. Nonlinear Sci. Numer. Simul. 24(13), 127–144 (2015)

    MathSciNet  Google Scholar 

  8. Wei, J.W., Dong, G.Z., Chen, Z.H.: On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment. J. Power Sources 365, 308–319 (2017)

    Google Scholar 

  9. Hu, X.S., Sun, F.C., Zou, Y.: Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive luenberger observer. Energies 3, 1586–1603 (2010)

    Google Scholar 

  10. Chaoui, H., Ibe-Ekeocha, C.C.: State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans. Veh. Technol. 66(10), 8773–8783 (2017)

    Google Scholar 

  11. Sheng, H., Xiao, J.: Electric vehicle state of charge estimation: nonlinear correlation and fuzzy support vector machine. J. Power Sources 281, 131–137 (2015)

    Google Scholar 

  12. Mu, H., Xiong, R., Duan, H.F., Chang, Y.H., Chen, Z.Y.: A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy 207, 384–393 (2017)

    Google Scholar 

  13. Anthony, B., Benjamin, D., Sébastien, G., Mathisa, G., Frédéric, S., Delphine, R.: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689 (2013)

    Google Scholar 

  14. Plett, G.L.: Extended Kalman filtering for battery management systems of lipb-based hev battery packs: Part 1. Background. J. Power Sources 134(2), 252–261 (2004)

    Google Scholar 

  15. Plett, G.L.: Extended Kalman filtering for battery management systems of lipb-based hev battery packs. Part 2. modeling and identification. J. Power Sources 134(2), 262–276 (2004)

    Google Scholar 

  16. Plett, G.L.: Extended kalman filtering for battery management systems of lipb-based hev battery packs: part 3. State and parameter estimation. J. Power Sources 134(2), 277–292 (2004)

    Google Scholar 

  17. Xiong, R., Gong, X.Z., Mi, C.C., Sun, F.C.: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter. J. Power Sources 243, 805–816 (2013)

    Google Scholar 

  18. Xiong, R., Sun, F.C., Chen, Z., He, H.W.: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles. Appl. Energy 113, 463–476 (2014)

    Google Scholar 

  19. Pan, H.H., Lü, Z.Q., Lin, W.L., Li, J.Z., Chen, L.: State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model. Energy 138, 764–775 (2017)

    Google Scholar 

  20. Chiang, C.J., Yang, J.L., Cheng, W.C.: Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter. J. Power Sources 234, 234–243 (2013)

    Google Scholar 

  21. Aung, H., Soon Low, K., Ting Goh, S.: State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-Ukfst) in nanosatellite. IEEE Trans. Power Electron. 30(9), 4774–4783 (2015)

    Google Scholar 

  22. Meng, J.H., Luo, G.Z., Gao, F.: Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine. IEEE Trans. Power Electron. 31(3), 2226–2238 (2016)

    Google Scholar 

  23. Tian, Y., Xia, B.Z., Sun, W., Xu, Z.H., Zheng, W.W.: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter. J. Power Sources 270(3), 619–626 (2014)

    Google Scholar 

  24. Xia, B.Z., Wang, H.Q., Tian, Y., Wang, M.Z.: State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies 8(6), 5916–5936 (2015)

    Google Scholar 

  25. Xia, B.S., Sun, Z., Zhang, R.F., Lao, Z.Z.: A cubature particle filter algorithm to estimate the state of the charge of lithium-ion batteries based on a second-order equivalent circuit model. Energies 10(4), 457 (2017)

    Google Scholar 

  26. Cui, X.G., Jing, Z., Luo, M.J., Guo, Y.Z.: A new method for state of charge estimation of lithium-ion batteries using square root cubature Kalman filter. Energies 11(1), 209 (2018)

    Google Scholar 

  27. Zhang, X., Wang, Y.J., Liu, C., Chen, Z.H.: A novel approach of remaining discharge energy prediction for large format lithium-ion battery pack. J. Power Sources 343, 216–225 (2017)

    Google Scholar 

  28. Shen, P., Ouyang, M.G., Han, X.B., Feng, X.N.: Error analysis of the model-based state of charge observer for lithium-ion batteries. IEEE Trans. Veh. Technol. 67(9), 8055–8064 (2018)

    Google Scholar 

  29. Zou, C.F., Hu, X.S., Wei, Z.B., Wik, T.: Electrochemical estimation and control for lithium-ion battery health-aware fast charging. IEEE Trans. Ind. Electron. 65(8), 6635–6645 (2018)

    Google Scholar 

  30. Moura, S.J., Chaturvedi, N.A., Krstic, M.: PDE estimation techniques for advanced battery management systems—part I: SOC estimation. Am. Control Conf, Proc (2012). https://doi.org/10.1109/ACC.2012.6315019

    Book  Google Scholar 

  31. Tran, N.T., Vilathgamuwa, M., Li, Y., Farrell, T., Choi, S.S., Teague, J.: State of charge estimation of lithiu-m ion batteries using an extended single particle model and sigmapoint Kalman filter. Proc. IEEE SPEC (2017). https://doi.org/10.1109/SPEC.2017.8333564

    Article  Google Scholar 

  32. Klein, R., Chaturvedi, N.A., Christensen, J., Ahmed, J., Findeisen, R., Kojic, A.: Electrochemical model based observer design for a lithiu-m ion battery. IEEE Trans. Syst. Technol. 21(2), 289–301 (2013)

    Google Scholar 

  33. Sun, H.C., Xiong, R., He, H.W.: A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique. Appl. Energy 162, 1399–1409 (2016)

    Google Scholar 

  34. Xiong, R., He, H.H., Zhao, K.: Research on an online identification algorithm for a thevenin battery model by an experimental approach. Int. J. Green Energy 12(3), 272–278 (2014)

    Google Scholar 

  35. Chen, Q.Y., Jiang, J.C., Ruan, H.J., Zhang, C.P.: A simply designed and universal sliding mode observer for the SOC estimation of lithium-ion batteries. Iet Power Electron. 10(6), 697–705 (2017)

    Google Scholar 

  36. Hu, X.S., Li, S.B., Peng, H.: A comparative study of equivalent circuit models for li-ion batteries. J. Power Sources 198, 359–367 (2012)

    Google Scholar 

  37. Shen, P., Ouyang, M.G., Lu, L.G., Li, J.Q., Feng, X.N.: The co-estimation of state of charge, state of health and state of function for lithium-ion batteries in electric vehicles. IEEE Trans. Veh. Technol. 67(1), 92–103 (2018)

    Google Scholar 

  38. Zhang, Y.Z., Xiong, R., He, H.W., Shen, W.X.: A lithium-ion battery pack state of charge and state of energy estimation algorithms using a hardware-in-the-loop validation. IEEE Trans. Power Electron. 32(6), 4421–4431 (2017)

    Google Scholar 

  39. Shen, Y.Q.: Improved chaos genetic algorithm based state of charge determination for lithium batteries in electric vehicles. Energy 152, 576–585 (2018)

    Google Scholar 

  40. Yu, Q.Q., Xiong, R., Lin, C., Shen, W.X., Deng, J.J.: Lithium-ion battery parameters and state-of-charge joint estimation based on h infinity and unscented kalman filters. IEEE Trans. Veh. Technol. 66(10), 8693–8701 (2017)

    Google Scholar 

  41. Ye, M., Guo, H., Cao, B.G.: A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter. Appl. Energy 190, 740–748 (2017)

    Google Scholar 

  42. Chen, C., Xinong, R., Shen, W.X.: A lithium-ion battery-in-the-loop approach to test and validate multiscale Dual H infinity filters for state-of-charge and capacity estimation. IEEE Trans. Power Electron. 33(1), 332–342 (2018)

    Google Scholar 

  43. Liu, X.T., Chen, Z.H., Zhang, C.B., Wu, J.: A novel temperature-compensated model for power li-ion batteries with dual-particle-filter state of charge estimation. Appl. Energy 123, 263–272 (2014)

    Google Scholar 

  44. Zarei, J., Ehsan, S.: Nonlinear and constrained state estimation based on the cubature kalman filter. Ind. Eng. Chem. Res. 53(10), 3938–3949 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 11172220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinli Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Xu, J. & Yan, X. Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter. J. Power Electron. 20, 292–307 (2020). https://doi.org/10.1007/s43236-019-00023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-019-00023-4

Keywords

Navigation