Skip to main content

Advertisement

Log in

Retrospective appurtenance of Euler and Werner deconvolution contiguity for source depth excogitation of Bouguer anomalies in the Benue Trough, Nigeria

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The leading cause of the glaring inexplicable errors in the accuracy of depth to anomaly assessments may be the technical challenge of the Euler deconvolution method from gravity surveys to perspicuously exhilarate the shape of major granitoid, tectonic lineaments, and local and regional fault systems without the existence of cogent correlative analytical simulation tools. That enigma becomes cumbersome with the increased existence of significantly incoherent density contrast between altered rocks or structures and their host rocks. That erudition aims to conduct a retrospective comparative analysis of the Euler and Werner deconvolution methods for effective depth excogitation of Bouguer anomalies in the Benue Trough, Nigeria.  Comparing the previously acquired Werner deconvolution for deep and shallow source data to the detailed and comprehensive results of the Euler deconvolution gave the desired results. The study utilized various filtering techniques to analyze Bouguer anomalies and develop derivative grids to identify distinct subsurface features, such as sedimentary formations, alluvial deposit zones, and regions with high- and low-density rock minerals. Results of the comparative analysis of Euler and Werner deep source gave a minimum of 7.17 km for block 8 and a maximum of 19.8 km for block 15 for Euler. It gave a minimum of 6.89 km for block 9 and a maximum of 21.4 km for block 15. The deep source trend result gave a relatively stable deep source signal from blocks 1 to 9; while, there was inconsistency for blocks 10 and 11, then with a sudden increase in signal strength. This inconsistency is perhaps due to the complexity of the anomaly and inconsistency detected using both methods for depth resolution. Observations showed a similar trend for shallow source results. Suggestions showed that the region has potential for hydrocarbon and economic mineral exploration, making it attractive for further geologic studies. Future gravity simulators should have multiple deconvolution windows to improve modeling accuracy. That can have valuable implications for Nigeria's oil and gas industry and other regions with similar geological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting the findings of this study are within the manuscript. All relevant datasets used in the research entitled "Retrospective appurtenance of Euler and Werner deconvolution contiguity for source depth excogitation of Bouguer anomalies in the Benue Trough, Nigeria" are included within the main body of the manuscript itself. These datasets contain the necessary information to replicate the results and conclusions presented in the paper. For any further inquiries regarding the data, readers are encouraged to refer to the manuscript. The authors are committed to promoting transparency and openness in scientific research, and by providing the data within the manuscript, they aim to facilitate the validation and extension of their findings by the scientific community.

References

  • Abdullahi, M., Kumar, R., & Singh, U. K. (2019). Magnetic basement depth from high-resolution aeromagnetic data of parts of lower and middle Benue Trough (Nigeria) using scaling spectral method. Journal of African Earth Sciences, 150, 337–345. https://doi.org/10.1016/j.jafrearsci.2018.11.006

    Article  Google Scholar 

  • Adegoke, J. A., & Layade, G. O. (2019). Comparative depth estimation of iron-ore deposit using the data-coordinate interpolation technique for airborne and ground magnetic survey variation. African Journal of Science, Technology, Innovation and Development, 11(5), 663–669. https://doi.org/10.1080/20421338.2019.1572702

    Article  Google Scholar 

  • Anudu, G. K., Stephenson, R. A., & Macdonald, D. I. (2014). Using high-resolution aeromagnetic data to recognise and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria. Journal of African Earth Sciences, 99, 625–636. https://doi.org/10.1016/j.jafrearsci.2014.02.017

    Article  Google Scholar 

  • Behrendt, J. C., & Klitgord, K. D. (1980). High-sensitivity aeromagnetic survey of the U.S Atlantic continental margin. Geophysics. https://doi.org/10.1190/11441068

    Article  Google Scholar 

  • Benkhelil, J. (1989). The origin and evolution of the Cretaceous Benue Trough (Nigeria). Journal of African Earth Sciences (and the Middle East), 82–4, 251–282. https://doi.org/10.1016/s0899-5362(89)80028-4

    Article  Google Scholar 

  • Biswas, A., Parija, M., & Kumar, S. (2017). Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Annals of Geophysics. https://doi.org/10.4401/ag-7129

    Article  Google Scholar 

  • Egu, D. I., & Ilozobhie, A. J. (2020). Astute Expository of Vacillation Attributes of Geoseismo-Thermal Ruminative of the Turonian Maastrichtian Fika Shale in Parts of the Bornu Basin, North-Eastern Nigeria. 203606-MS paper presented at the SPE Nigeria Annual International Conference and Exhibition, 11–13 August, Nigeria. https://doi.org/10.2118/203606-ms

  • Emujakporue, G., Ofoha, C. C., & Kiani, I. (2018). Investigation into the basement morphology and tectonic lineament using aeromagnetic anomalies of Parts of Sokoto Basin, North Western, Nigeria. Egyptian Journal of Petroleum, 274, 671–681. https://doi.org/10.1016/j.ejpe.2017.10.003

    Article  Google Scholar 

  • Epuh, E. E., Okolie, C. J., Daramola, O. E., Ogunlade, F. S., Oyatayo, F. J., Akinnusi, S. A., & Emmanuel, E.-O.I. (2020). An integrated lineament extraction from satellite imagery and gravity anomaly maps for groundwater exploration in the Gongola Basin. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2020.100346

    Article  Google Scholar 

  • Falconer, J.D. (1911). The geology and geography of northern Nigeria (London, UK: MacMillan).

  • Hansen, R. O., & Simmonds, M. (1993). Multiple-source Werner deconvolution. Geophysics, 58, 1792–1800.

    Article  Google Scholar 

  • Hartman, R. R., Teskey, D. J., & Friedberg, J. L. (1971). A system for rapid digital aeromagnetic interpretation. Geophysics, 36(5), 891–918. https://doi.org/10.1190/1.1440223

    Article  Google Scholar 

  • Igwe, E. O., & Okoro, A. U. (2016). Field and lithostratigraphic studies of the Eze-Aku Group in the Afikpo Synclinorium, southern Benue Trough Nigeria. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2016.03.016

    Article  Google Scholar 

  • Ikeh, J. C., Ugwu, G. Z., & Asielue, K. (2017). Spectral depth analysis for determining the depth to basement of magnetic source rocks over Nkalagu and Igumale areas of the Lower Benue Trough, Nigeria. International Journal of Physical Sciences, 1219, 224–234. https://doi.org/10.5897/ijps2017.4668

    Article  Google Scholar 

  • Ilozobhie, A. J., & Egu, D. I. (2021). Dynamic reservoir sand characterization of an oil field in the Niger Delta from seismic and well log data. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-021-06542-4

    Article  Google Scholar 

  • Kamba, A. H., & Ahmed, S. K. (2017). Depth to basement determination using source parameter imaging (SPI) of aeromagnetic data: an application to lower sokoto basin, Northwest, Nigeria. International Journal of Modern Applied Physics, 7(1), 1–10.

    Google Scholar 

  • Layade, G. O., Adebo, B. A., Olurin, O. T., & Ganiyu, O. M. (2015). Separation of Regional-Residual Anomaly Using Least Square Polynomial Fitting Method. Journal of the Nigerian Association of Mathematical Physics, 30, 69–180.

    Google Scholar 

  • Layade, G. O., Edunjobi, H., Makinde, V., & Bada, B. (2020). Estimation of Depth to Bouguer Anomaly Sources Using Euler Deconvolution Techniques. Materials and Geoenvironment, 67(4), 185–195. https://doi.org/10.2478/rmzmag-2020-0016

    Article  Google Scholar 

  • Likkason, O. K. (2007). Angular Spectral analysis of aeromagnetic data over Middle Benue Trough. Nigeria. Journal of Mining and Geology, 43(1), 53–62.

    Google Scholar 

  • Megwara, J. U., & Udensi, E. E. (2014). Structural analysis using aeromagnetic data: case study of parts of Southern Bida Basin Nigeria and the surrounding basement Rocks. Earth Science Research. https://doi.org/10.5539/esr.v3n2p27

    Article  Google Scholar 

  • Mickus, K. L., & Hinojosa, J. H. (2001). The complete gravity gradient tensor derived from the vertical component of gravity: a Fourier transform technique. Journal of Applied Geophysics, 46(3), 159–174. https://doi.org/10.1016/s0926-9851(01)00031-3

    Article  Google Scholar 

  • Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507–517. https://doi.org/10.1190/1.1440276

    Article  Google Scholar 

  • Naidu, P. (1968). Spectrum of the potential field due to randomly distributed sources. Geophysics, 33(2), 337–345. https://doi.org/10.1190/1.1439933

    Article  Google Scholar 

  • Ngozi, A. O., Johnson, U. A., & Igwe, E. A. (2019). Spectral analysis and source parameter imaging of aeromagnetic data of Lafia and Akiri Areas, Middle Benue Trough. Nigeria. International Journal of Physical Sciences, 14(1), 1–14. https://doi.org/10.5897/ijps2018.4752

    Article  Google Scholar 

  • Nicolas, O.M. (2009): The Gravity Method. Exploration for Geothermal Resources, pp. 1–9.

  • Nwogwugwu, E. O., Salako, K. A., Adewumi, T., & Okwokwo, I. O. (2017). Determination of depth to basement rocks over parts of middle benue trough, North Central Nigeria, using high resolution aeromagnetic data. Journal of Geology and Mining Research, 93, 18–27. https://doi.org/10.5897/jgmr2017.0276

    Article  Google Scholar 

  • Nwosu, O. B. (2014). Determination of magnetic basement depth over parts of middle benue trough by source parameter Imaging (SPI) technique using HRAM. International Journal of Scientific and Technology Research, 3(1), 262–271.

    Google Scholar 

  • Obiora, D. N., Idike, J. I., Oha, A. I., Soronnadi-Ononiwu, C. G., Okwesili, N. A., & Ossai, M. N. (2018). Investigation of magnetic anomalies of Abakaliki area, Southeastern Nigeria, using high resolution aeromagnetic data. Journal of Geology and Mining, 10(6), 57–71.

    Article  Google Scholar 

  • Ofoegbu, C. O. (1983). A review of the geology of the benue trough. Nigeria. Journal of African Earth Sciences, 33, 283–291. https://doi.org/10.1016/0899-5362(85)90001-6

    Article  Google Scholar 

  • Ofoha, C. C., Emujakporue, G., Ngwueke, M. I., & Kiani, I. (2016). Determination of magnetic basement depth over parts of sokoto basin, within Northern Nigeria, using improved source Parameter Imaging (ISPI) Technique. World Scientific News, 50, 266–277.

    Google Scholar 

  • Oghuma, A. A., Obiadi, I. I., & Obiadi, C. M. (2015). 2- D Spectral analysis of aeromagnetic anomalies over parts of Montu and environs, Northeastern, Nigeria. Journal of Earth Science and Climatic Change., 6, 8–14. https://doi.org/10.4172/2157-7617.1000303

    Article  Google Scholar 

  • Olowofela, J. A., Akinyemi, O. D., Badmus, B. S., Awoyemi, M. O., Olurin, O. T., & Ganiyu, S. A. (2013). Depth estimation and source location of magnetic anomalies from a basement complex formation, using Local Wavenumber Method (LWM). IOSR Journal of Applied Physics, 4(2), 33–38.

    Article  Google Scholar 

  • Olurin, O. T., Olowofela, J. A., Akinyemi, O. D., Badmus, B. S., Idowu, O. A., & Ganiyu, S. A. (2015). Enhancement and basement depth estimation from airborne magnetic data. African Review of Physics, 10(38), 303–313.

    Google Scholar 

  • Phillips, P., Wechsler, H., Huang, J., & Rauss, P. J. (1998). The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 16(5), 295–306. https://doi.org/10.1016/s0262-8856(97)00070-x

    Article  Google Scholar 

  • Reford, M. S., & Sumner, J. S. (1964). Aeromagnetics. Geophysics, 29(4), 482–516. https://doi.org/10.1190/1.1439384

    Article  Google Scholar 

  • Reid, A. B., & Thurston, J. B. (2014). The structural index in gravity and magnetic interpretation: Errors, uses, and abuses. Geophysics, 79(4), J61–J66. https://doi.org/10.1190/geo2013-0235.1

    Article  Google Scholar 

  • Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80–91. https://doi.org/10.1190/1.1442774

    Article  Google Scholar 

  • Reid, A. B., Ebbing, J., & Webb, S. J. (2014). Avoidable Euler Errors - the use and abuse of Euler deconvolution applied to potential fields. Geophysical Prospecting, 62(5), 1162–1168. https://doi.org/10.1111/1365-2478.12119

    Article  Google Scholar 

  • Revees, C. (2005). Aeromagnetic Surveys; Principles. GEOSOFT: Practice and Interpretation.

    Google Scholar 

  • Rivas, J. (2009). Gravity and Magnetic Methods. Short course on surface exploration for geothermal resources. United Nations University, LaGeo: Elsavador.

    Google Scholar 

  • Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116–125. https://doi.org/10.1190/1.1443174

    Article  Google Scholar 

  • Sawuta, J. M., Ayanninuola, O. S., Udensi, E. E., & Ogwola, P. (2019). Estimation of magnetic depth to source using high resolution of aeromagnetic data of parts of upper benue trough. North Eastern Nigeria. Science World Journal, 14(1), 7–11.

    Google Scholar 

  • Spector, A., & Grant, F. S. (1970a). Statistical models for interpreting aeromagnetic data. Geophysics, 352, 293–302. https://doi.org/10.1190/1.1440092

    Article  Google Scholar 

  • Spector, A., & Grant, F. S. (1970b). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293–302. https://doi.org/10.1190/1.1440092

    Article  Google Scholar 

  • Stavrev, P. Y. (1997). Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophysical Prospecting, 45(2), 207–246. https://doi.org/10.1046/j.1365-2478.1997.00331.x

    Article  Google Scholar 

  • Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics (2nd ed., p. 770). Cambridge University Press.

    Book  Google Scholar 

  • Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47(1), 31–37. https://doi.org/10.1190/1.1441278

    Article  Google Scholar 

  • Umukoro, E. S., & Akanbi, E. S. (2014). Interpretation of aeromagnetic anomalies within Maijuju area, north central Nigeria, using Analytic signal, Euler deconvoluion and 2-d Modelling. Nigerian Journal of Physics, 25(2), 1.

    Google Scholar 

  • Vanbreemen, O., Pidgeon, R., & Bowden, P. (1977). Age and isotopic studies of some Pan-African granites from North-central Nigeria. Precambrian Research, 44, 307–319. https://doi.org/10.1016/0301-9268(77)90001-8

    Article  Google Scholar 

  • Werner, S. (1953). Interpretation of magnetic anomalies at sheetlike bodies. Geological Understanding Series, CC Arabok, 43(6), 66–97.

    Google Scholar 

  • Whitehead, N. and Musselman, C. (2005). Montaj Grav/Mag Interpretation: Processing, Analysis, and Visualization System for 3D Inversion of Potential Field Data for Oasis MontajTM, Tutorial and User Guide, Version 6.1, Geosoft Inc., Toronto, ON, Canada M5J 1A7.

  • Wright, J.B. (1976). Origin of the Benue trough- a critical review, in C.A., Kogbe (2), Geology of Nigeria, (Lagos, Nigeria: Elizabethan Publication Company), 309–317.

  • Zahra, H. S., & Oweis, H. T. (2016). Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara depression area, western desert. Egypt. NRIAG Journal of Astronomy and Geophysics, 5(1), 106–123. https://doi.org/10.1016/j.nrjag.2016.01.005

    Article  Google Scholar 

Download references

Acknowledgements

This research was done in collaboration with Teeiloz Nigeria Ltd, the Physics Department at the University of Calabar in Nigeria, and the Petroleum Engineering Department of Madonna University in Nigeria’s College of Engineering and Technology. Federal University of Technology's Geology Department, Minna, Niger State, Nigeria. the Geosciences Department, University of Uyo, Uyo, Environmental Engineering Faculty, Cracow University of Technology, Cracow Poland and Okna Geoservices Ltd, Eket, Nigeria

Author information

Authors and Affiliations

Authors

Contributions

IJA and EJS were responsible for the data acquisition, interpretation, and analysis. SA provided technical guidance and expertise in the application of the Euler and Werner deconvolution techniques. AOE contributed to the literature review and interpretation of the results. INJ assisted with the data analysis and interpretation, and EDI provided critical insights and feedback throughout the project. All authors read and approved the final draft.

Corresponding author

Correspondence to O. E. Agbasi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by H. Chaves

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilozobhie, A.J., Ejepu, J.S., Szafarczyk, A. et al. Retrospective appurtenance of Euler and Werner deconvolution contiguity for source depth excogitation of Bouguer anomalies in the Benue Trough, Nigeria. J. Sediment. Environ. 8, 491–505 (2023). https://doi.org/10.1007/s43217-023-00145-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00145-7

Keywords

Navigation